Abstract
Structure from Motion (SfM) algorithms take as input multi-view stereo images (along with internal calibration information) and yield a 3D point cloud and camera orientations/poses in a common 3D coordinate system. In the case of an incremental SfM pipeline, the process requires repeated model estimations based on detected feature points: homography, fundamental and essential matrices, as well as camera poses. These estimations have a crucial impact on the quality of 3D reconstruction. We propose to improve these estimations using the a contrario methodology. While SfM pipelines usually have globally-fixed thresholds for model estimation, the a contrario principle adapts thresholds to the input data and for each model estimation. Our experiments show that adaptive thresholds reach a significantly better precision. Additionally, the user is free from having to guess thresholds or to optimistically rely on default values. There are also cases where a globally-fixed threshold policy, whatever the threshold value is, cannot provide the best accuracy, contrary to an adaptive threshold policy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, S., Snavely, N., Simon, I., Seitz, S., Szeliski, R.: Building Rome in a day. In: 12th IEEE International Conference on Computer Vision (ICCV), pp. 72–79 (2009)
Frahm, J.-M., Fite-Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen, Y.-H., Dunn, E., Clipp, B., Lazebnik, S., Pollefeys, M.: Building Rome on a Cloudless Day. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 368–381. Springer, Heidelberg (2010)
Kahl, F.: Multiple view geometry and the L ∞ -norm. In: ICCV, pp. 1002–1009 (2005)
Dalalyan, A., Keriven, R.: L 1-penalized robust estimation for a class of inverse problems arising in multiview geometry. In: NIPS, pp. 441–449 (2009)
Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 1362–1376 (2010)
Hiep, V., Keriven, R., Labatut, P., Pons, J.: Towards high-resolution large-scale multi-view stereo. In: CVPR, pp. 1430–1437 (2009)
Zach, C., Klopschitz, M., Pollefeys, M.: Disambiguating visual relations using loop constraints. In: CVPR, pp. 1426–1433 (2010)
Aanæs, H., Dahl, A., Steenstrup Pedersen, K.: Interesting interest points. International Journal of Computer Vision 97, 18–35 (2012)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision (IJCV) 60, 91–110 (2004)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Lourakis, M.I.A., Argyros, A.A.: SBA: A software package for generic sparse bundle adjustment. ACM Transactions on Mathematical Software (TOMS) 36 (2009)
Wu, C., Agarwal, S., Curless, B., Seitz, S.M.: Multicore bundle adjustment. In: CVPR, pp. 3057–3064 (2011)
Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. ACM Transactions on Graphics (TOG) 25, 835–846 (2006)
Gherardi, R., Farenzena, M., Fusiello, A.: Improving the efficiency of hierarchical structure-and-motion. In: CVPR, pp. 1594–1600 (2010)
Havlena, M., Torii, A., Knopp, J., Pajdla, T.: Randomized structure from motion based on atomic 3D models from camera triplets. In: CVPR, pp. 2874–2881 (2009)
Scaramuzza, D., Fraundorfer, F.: Visual odometry: Part I - the first 30 years and fundamentals. IEEE Robot. Automat. Mag. 18 (2011)
Fraundorfer, F., Scaramuzza, D.: Visual odometry: Part II - matching, robustness, and applications. IEEE Robot. Automat. Mag. 19 (2012)
Martinec, D., Pajdla, T.: Robust rotation and translation estimation in multiview reconstruction. In: CVPR (2007)
Govindu, V.M.: Combining two-view constraints for motion estimation. In: CVPR, vol. 2, pp. II.218–II.225 (2001)
Govindu, V.M.: Robustness in Motion Averaging. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 457–466. Springer, Heidelberg (2006)
Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM (CACM) 24, 381–395 (1981)
Desolneux, A., Moisan, L., Morel, J.M.: From Gestalt theory to image analysis: a probabilistic approach, 1st edn. Springer (2007)
Moisan, L., Moulon, P., Monasse, P.: Automatic homographic registration of a pair of images, with a contrario elimination of outliers. Image Processing On Line (2012), http://dx.doi.org/10.5201/ipol.2012.mmm-oh
Moisan, L., Stival, B.: A probabilistic criterion to detect rigid point matches between two images and estimate the fundamental matrix. Int. J. of Computer Vision (IJCV) 57, 201–218 (2004)
Rabin, J., Delon, J., Gousseau, Y., Moisan, L.: MAC-RANSAC: a robust algorithm for the recognition of multiple objects. In: Proc. of 3DPTV 2010, Paris (2010)
Nistér, D.: An efficient solution to the five-point relative pose problem. In: CVPR, vol. 2, pp. II.195–II.202 (2003)
Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: an accurate O(n) solution to the PnP problem. International Journal of Computer Vision (IJCV) 81, 155–166 (2009)
Strecha, C., von Hansen, W., Van Gool, L.J., Fua, P., Thoennessen, U.: On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: CVPR, pp. 1–8 (2008)
Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1992)
Rabin, J., Delon, J., Gousseau, Y.: A statistical approach to the matching of local features. SIAM J. Imaging Sciences 2, 931–958 (2009)
Sabater, N., Almansa, A., Morel, J.M.: Meaningful matches in stereovision. IEEE Transactions on Pattern Analysis and Machine Intelligence 99 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Moulon, P., Monasse, P., Marlet, R. (2013). Adaptive Structure from Motion with a Contrario Model Estimation. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7727. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37447-0_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-37447-0_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37446-3
Online ISBN: 978-3-642-37447-0
eBook Packages: Computer ScienceComputer Science (R0)