Abstract
Many existing algorithms mine frequent patterns from traditional databases of precise data. However, there are situations in which data are uncertain. In recent years, researchers have paid attention to frequent pattern mining from uncertain data. When handling uncertain data, UF-growth and UFP-growth are examples of well-known mining algorithms, which use the UF-tree and the UFP-tree respectively. However, these trees can be large, and thus degrade the mining performance. In this paper, we propose (i) a more compact tree structure to capture uncertain data and (ii) an algorithm for mining all frequent patterns from the tree. Experimental results show that (i) our tree is usually more compact than the UF-tree or UFP-tree, (ii) our tree can be as compact as the FP-tree, and (iii) our mining algorithm finds frequent patterns efficiently.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: VLDB 1994, pp. 487–499 (1994)
Aggarwal, C.C., Li, Y., Wang, J., Wang, J.: Frequent pattern mining with uncertain data. In: ACM KDD 2009, pp. 29–37 (2009)
Bernecker, T., Kriegel, H.-P., Renz, M., Verhein, F., Zuefle, A.: Probabilistic frequent itemset mining in uncertain databases. In: ACM KDD 2009, pp. 119–127 (2009)
Calders, T., Garboni, C., Goethals, B.: Approximation of frequentness probability of itemsets in uncertain data. In: IEEE ICDM 2010, pp. 749–754 (2010)
Calders, T., Garboni, C., Goethals, B.: Efficient pattern mining of uncertain data with sampling. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010, Part I. LNCS (LNAI), vol. 6118, pp. 480–487. Springer, Heidelberg (2010)
Chui, C.-K., Kao, B., Hung, E.: Mining frequent itemsets from uncertain data. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 47–58. Springer, Heidelberg (2007)
Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: ACM SIGMOD 2000, pp. 1–12 (2000)
Lakshmanan, L.V.S., Leung, C.K.-S., Ng, R.T.: Efficient dynamic mining of constrained frequent sets. ACM TODS 28(4), 337–389 (2003)
Leung, C.K.-S.: Mining uncertain data. WIREs Data Mining and Knowledge Discovery 1(4), 316–329 (2011)
Leung, C.K.-S., Hao, B.: Mining of frequent itemsets from streams of uncertain data. In: IEEE ICDE 2009, pp. 1663–1670 (2009)
Leung, C.K.-S., Irani, P.P., Carmichael, C.L.: FIsViz: a frequent itemset visualizer. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 644–652. Springer, Heidelberg (2008)
Leung, C.K.-S., Jiang, F.: RadialViz: an orientation-free frequent pattern visualizer. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012, Part II. LNCS (LNAI), vol. 7302, pp. 322–334. Springer, Heidelberg (2012)
Leung, C.K.-S., Mateo, M.A.F., Brajczuk, D.A.: A tree-based approach for frequent pattern mining from uncertain data. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 653–661. Springer, Heidelberg (2008)
Leung, C.K.-S., Tanbeer, S.K.: Fast tree-based mining of frequent itemsets from uncertain data. In: Lee, S.-g., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012, Part I. LNCS, vol. 7238, pp. 272–287. Springer, Heidelberg (2012)
Tong, Y., Chen, L., Cheng, Y., Yu, P.S.: Mining frequent itemsets over uncertain databases. PVLDB 5(11), 1650–1661 (2012)
Zhang, Q., Li, F., Yi, K.: Finding frequent items in probabilistic data. In: ACM SIGMOD 2008, pp. 819–832 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Leung, C.KS., Tanbeer, S.K. (2013). PUF-Tree: A Compact Tree Structure for Frequent Pattern Mining of Uncertain Data. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7818. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37453-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-37453-1_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37452-4
Online ISBN: 978-3-642-37453-1
eBook Packages: Computer ScienceComputer Science (R0)