Skip to main content

F-Trail: Finding Patterns in Taxi Trajectories

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7818))

Included in the following conference series:

  • 4187 Accesses

Abstract

Given a large number of taxi trajectories, we would like to find interesting and unexpected patterns from the data. How can we summarize the major trends, and how can we spot anomalies? The analysis of trajectories has been an issue of considerable interest with many applications such as tracking trails of migrating animals and predicting the path of hurricanes. Several recent works propose methods on clustering and indexing trajectories data. However, these approaches are not especially well suited to pattern discovery with respect to the dynamics of social and economic behavior. To further analyze a huge collection of taxi trajectories, we develop a novel method, called F-Trail, which allows us to find meaningful patterns and anomalies. Our approach has the following advantages: (a) it is fast, and scales linearly on the input size, (b) it is effective, leading to novel discoveries, and surprising outliers. We demonstrate the effectiveness of our approach, by performing experiments on real taxi trajectories. In fact, F-Trail does produce concise, informative and interesting patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mei, Q., Zhai, C.X.: Discovering evolutionary theme patterns from text: an exploration of temporal text mining. In: Proceedings of the KDD 2005, pp. 198–207. ACM (2005)

    Google Scholar 

  2. Chudova, D., Gaffney, S., Mjolsness, E., Smyth, P.: Translation-invariant mixture models for curve clustering. In: KDD, pp. 79–88 (2003)

    Google Scholar 

  3. Cudre-Mauroux, P., Wu, E., Madden, S.: Trajstore: An adaptive storage system for very large trajectory data sets. In: ICDE, pp. 109–120 (March 2010)

    Google Scholar 

  4. Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models. In: KDD, pp. 63–72 (1999)

    Google Scholar 

  5. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In: KDD, pp. 330–339 (2007)

    Google Scholar 

  6. Hadjieleftheriou, M., Kollios, G., Tsotras, V.J., Gunopulos, D.: Indexing spatiotemporal archives. VLDB J. 15(2), 143–164 (2006)

    Article  Google Scholar 

  7. Lee, J.-G., Han, J., Li, X.: Trajectory outlier detection: A partition-and-detect framework. In: Proceedings of the 2008 IEEE 24th International Conference on Data Engineering, pp. 140–149. IEEE Computer Society, Washington, DC (2008)

    Chapter  Google Scholar 

  8. Lee, J.-G., Han, J., Whang, K.-Y.: Trajectory clustering: a partition-and-group framework. In: SIGMOD, pp. 593–604 (2007)

    Google Scholar 

  9. Leskovec, J., Chakrabarti, D., Kleinberg, J.M., Faloutsos, C.: Realistic, mathematically tractable graph generation and evolution, using kronecker multiplication. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 133–145. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Li, Z., Ding, B., Han, J., Kays, R., Nye, P.: Mining periodic behaviors for moving objects. In: KDD, pp. 1099–1108 (2010)

    Google Scholar 

  11. Liu, W., Zheng, Y., Chawla, S., Yuan, J., Xing, X.: Discovering spatio-temporal causal interactions in traffic data streams. In: KDD, pp. 1010–1018 (2011)

    Google Scholar 

  12. Mandelbrot, B.: Fractal Geometry of Nature. W.H. Freeman, New York (1977)

    Google Scholar 

  13. Matsubara, Y., Sakurai, Y., Faloutsos, C., Iwata, T., Yoshikawa, M.: Fast mining and forecasting of complex time-stamped events. In: KDD, pp. 271–279 (2012)

    Google Scholar 

  14. Matsubara, Y., Sakurai, Y., Prakash, B.A., Li, L., Faloutsos, C.: Rise and fall patterns of information diffusion: model and implications. In: KDD, pp. 6–14 (2012)

    Google Scholar 

  15. Matsubara, Y., Sakurai, Y., Yoshikawa, M.: Scalable algorithms for distribution search. In: ICDM, pp. 347–356 (2009)

    Google Scholar 

  16. Papadias, D., Tao, Y., Zhang, J., Mamoulis, N., Shen, Q., Sun, J.: Indexing and retrieval of historical aggregate information about moving objects. In: IEEE Data Engineering Bulletin (2002)

    Google Scholar 

  17. Peitgen, H.-O., Juergens, H., Saupe, D.: Chaos and Fractals: New Frontiers of Science. Springer-Verlag New York Inc. (1992)

    Google Scholar 

  18. Sakurai, Y., Faloutsos, C., Yamamuro, M.: Stream monitoring under the time warping distance. In: Proceedings of ICDE, Istanbul, Turkey, pp. 1046–1055 (April 2007)

    Google Scholar 

  19. Schroeder, M.: Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. W.H. Freeman and Company, New York (1991)

    MATH  Google Scholar 

  20. Seshadri, M., Machiraju, S., Sridharan, A., Bolot, J., Faloutsos, C., Leskovec, J.: Mobile call graphs: beyond power-law and lognormal distributions. In: KDD, Las Vegas, Nevada, USA, pp. 596–604 (2008)

    Google Scholar 

  21. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: Proceedings of the 18th International Conference on Data Engineering, pp. 673–684 (2002)

    Google Scholar 

  22. Willinger, W., Taqqu, M., Sherman, R., Wilson, D.V.: Self-similarity through high variability: statistical analysis of ethernet LAN traffic at the source level. ACM SIGCOMM 1995. Computer Communication Review 25, 100–113 (1995)

    Article  Google Scholar 

  23. Yuan, J., Zheng, Y., Xie, X.: Discovering regions of different functions in a city using human mobility and pois. In: KDD, pp. 186–194 (2012)

    Google Scholar 

  24. Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical world. In: KDD, pp. 316–324 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matsubara, Y., Li, L., Papalexakis, E., Lo, D., Sakurai, Y., Faloutsos, C. (2013). F-Trail: Finding Patterns in Taxi Trajectories. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7818. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37453-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37453-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37452-4

  • Online ISBN: 978-3-642-37453-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics