Abstract
Given a large number of taxi trajectories, we would like to find interesting and unexpected patterns from the data. How can we summarize the major trends, and how can we spot anomalies? The analysis of trajectories has been an issue of considerable interest with many applications such as tracking trails of migrating animals and predicting the path of hurricanes. Several recent works propose methods on clustering and indexing trajectories data. However, these approaches are not especially well suited to pattern discovery with respect to the dynamics of social and economic behavior. To further analyze a huge collection of taxi trajectories, we develop a novel method, called F-Trail, which allows us to find meaningful patterns and anomalies. Our approach has the following advantages: (a) it is fast, and scales linearly on the input size, (b) it is effective, leading to novel discoveries, and surprising outliers. We demonstrate the effectiveness of our approach, by performing experiments on real taxi trajectories. In fact, F-Trail does produce concise, informative and interesting patterns.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mei, Q., Zhai, C.X.: Discovering evolutionary theme patterns from text: an exploration of temporal text mining. In: Proceedings of the KDD 2005, pp. 198–207. ACM (2005)
Chudova, D., Gaffney, S., Mjolsness, E., Smyth, P.: Translation-invariant mixture models for curve clustering. In: KDD, pp. 79–88 (2003)
Cudre-Mauroux, P., Wu, E., Madden, S.: Trajstore: An adaptive storage system for very large trajectory data sets. In: ICDE, pp. 109–120 (March 2010)
Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models. In: KDD, pp. 63–72 (1999)
Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In: KDD, pp. 330–339 (2007)
Hadjieleftheriou, M., Kollios, G., Tsotras, V.J., Gunopulos, D.: Indexing spatiotemporal archives. VLDB J. 15(2), 143–164 (2006)
Lee, J.-G., Han, J., Li, X.: Trajectory outlier detection: A partition-and-detect framework. In: Proceedings of the 2008 IEEE 24th International Conference on Data Engineering, pp. 140–149. IEEE Computer Society, Washington, DC (2008)
Lee, J.-G., Han, J., Whang, K.-Y.: Trajectory clustering: a partition-and-group framework. In: SIGMOD, pp. 593–604 (2007)
Leskovec, J., Chakrabarti, D., Kleinberg, J.M., Faloutsos, C.: Realistic, mathematically tractable graph generation and evolution, using kronecker multiplication. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 133–145. Springer, Heidelberg (2005)
Li, Z., Ding, B., Han, J., Kays, R., Nye, P.: Mining periodic behaviors for moving objects. In: KDD, pp. 1099–1108 (2010)
Liu, W., Zheng, Y., Chawla, S., Yuan, J., Xing, X.: Discovering spatio-temporal causal interactions in traffic data streams. In: KDD, pp. 1010–1018 (2011)
Mandelbrot, B.: Fractal Geometry of Nature. W.H. Freeman, New York (1977)
Matsubara, Y., Sakurai, Y., Faloutsos, C., Iwata, T., Yoshikawa, M.: Fast mining and forecasting of complex time-stamped events. In: KDD, pp. 271–279 (2012)
Matsubara, Y., Sakurai, Y., Prakash, B.A., Li, L., Faloutsos, C.: Rise and fall patterns of information diffusion: model and implications. In: KDD, pp. 6–14 (2012)
Matsubara, Y., Sakurai, Y., Yoshikawa, M.: Scalable algorithms for distribution search. In: ICDM, pp. 347–356 (2009)
Papadias, D., Tao, Y., Zhang, J., Mamoulis, N., Shen, Q., Sun, J.: Indexing and retrieval of historical aggregate information about moving objects. In: IEEE Data Engineering Bulletin (2002)
Peitgen, H.-O., Juergens, H., Saupe, D.: Chaos and Fractals: New Frontiers of Science. Springer-Verlag New York Inc. (1992)
Sakurai, Y., Faloutsos, C., Yamamuro, M.: Stream monitoring under the time warping distance. In: Proceedings of ICDE, Istanbul, Turkey, pp. 1046–1055 (April 2007)
Schroeder, M.: Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. W.H. Freeman and Company, New York (1991)
Seshadri, M., Machiraju, S., Sridharan, A., Bolot, J., Faloutsos, C., Leskovec, J.: Mobile call graphs: beyond power-law and lognormal distributions. In: KDD, Las Vegas, Nevada, USA, pp. 596–604 (2008)
Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: Proceedings of the 18th International Conference on Data Engineering, pp. 673–684 (2002)
Willinger, W., Taqqu, M., Sherman, R., Wilson, D.V.: Self-similarity through high variability: statistical analysis of ethernet LAN traffic at the source level. ACM SIGCOMM 1995. Computer Communication Review 25, 100–113 (1995)
Yuan, J., Zheng, Y., Xie, X.: Discovering regions of different functions in a city using human mobility and pois. In: KDD, pp. 186–194 (2012)
Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical world. In: KDD, pp. 316–324 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Matsubara, Y., Li, L., Papalexakis, E., Lo, D., Sakurai, Y., Faloutsos, C. (2013). F-Trail: Finding Patterns in Taxi Trajectories. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7818. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37453-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-37453-1_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37452-4
Online ISBN: 978-3-642-37453-1
eBook Packages: Computer ScienceComputer Science (R0)