Abstract
In this paper, phase congruency features are used to develop a binarization method for degraded documents and manuscripts. Also, Gaussian and median filtering are used in order to improve the final binarized output. Gaussian filter is used for further enhance the output and median filter is applied to remove noises. To detect bleed-through degradation, a feature map based on regional minima is proposed and used. The proposed binarization method provides output binary images with high recall values and competitive precision values. Promising experimental results obtained on the DIBCO’09, H-DIBCO’10 and DIBCO’11 datasets, and this shows the robustness of the proposed binarization method against a large number of different types of degradation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Farrahi Moghaddam, R., Cheriet, M.: A multi-scale framework for adaptive binarization of degraded document images. Pattern Recognition 43(6), 2186–2198 (2010)
Special issue on recent advances in applications to visual cultural heritage. IEEE Signal Processing Magazine 12, 234–778 (2008)
Kovesi, P.: Image features from phase congruency. Journal of Computer Vision Research 1, 1–26 (1999)
Gatos, B., Ntirogiannis, K., Pratikakis, I.: ICDAR 2009 document image binarization contest (DIBCO 2009). In: ICDAR, pp. 1375–1382 (2009)
Pratikakis, I., Gatos, B., Ntirogiannis, K.: H-DIBCO 2010 handwritten document image binarization competition. In: ICDAR, pp. 727–732 (2010)
Pratikakis, I., Gatos, B., Ntirogiannis, K.: ICDAR 2011 document image binarization contest (DIBCO 2011). In: ICDAR, pp. 1506–1510 (2011)
Lu, S., Su, B., Tan, C.: Document image binarization using background estimation and stroke edges. IJDAR 13, 303–314 (2010)
Su, B., Lu, S., Tan, C.: Binarization of historical document images using the local maximum and minimum. In: Document Analysis Systems, pp. 159–166 (2010)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Systems, Man and Cybernetics 9(1), 62–66 (1979)
Farrahi Moghaddam, R., Cheriet, M.: AdOtsu: An adaptive and parameterless generalization of Otsu’s method for document image binarization. Pattern Recognition 13, 2419–2431 (2012)
Gatos, B., Pratikakis, S.J., Perantonis, S.J.: Improved document image binarization by using a combination of multiple binarization techniques and adapted edge information. In: ICPR, pp. 1–4 (2008)
Su, B., Lu, S., Tan, C.L.: Combination of document image binarization techniques. In: ICDAR, pp. 22–26 (2011)
Su, B., Lu, S., Tan, C.L.: A self-training learning document binarization framework. In: International Conference on Pattern Recognition, pp. 3187–3190 (2010)
Morrone, M., Burr, D.: Feature detection in human vision: a phase-dependent energy model. Royal Society of London B 235(1280), 221–245 (1988)
Ziaei Nafchi, H., Kanan, H.R.: A phase congruency based document binarization. In: IAPR ICISP, pp. 113–121 (2012)
Soille, P.: Morphological Image Analysis, Principles and Applications. Springer (2007)
Wellner, P.D.: Adaptive thresholding for the digitaldesk. Tech. Rep. EPC-110 (1993)
Bradley, D., Roth, G.: Adaptive thresholding using the integral image. Journal of Graphic Tools 12(2), 13–21 (2007)
Messaoud, I.B., Amiri, H., El Abed, H., Margner, V.: New binarization approach based on text block extraction. In: ICDAR, pp. 1205–1209 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ziaei Nafchi, H., Farrahi Moghaddam, R., Cheriet, M. (2013). Historical Document Binarization Based on Phase Information of Images. In: Park, JI., Kim, J. (eds) Computer Vision - ACCV 2012 Workshops. ACCV 2012. Lecture Notes in Computer Science, vol 7729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37484-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-37484-5_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37483-8
Online ISBN: 978-3-642-37484-5
eBook Packages: Computer ScienceComputer Science (R0)