Abstract
Falls are a major risk for the elderly and where immediate help is needed. The elderly, especially when suffering from dementia, are not able to react to emergency situations properly, thus falls need to be detected automatically. An overview of different classes of fall detection approaches is presented and a vision-based approach is introduced. We propose the use of a Kinect to obtain 3D data in combination with fuzzy logic for robust fall detection and show that our approach outperforms current state-of-the-art algorithms. Our approach is evaluated on 72 video sequences, containing 40 falls and 32 activities of daily living.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wild, D., Nayak, U.S., Isaacs, B.: How dangerous are falls in old people at home? British Medical Journal (Clinical Research Ed.) 282, 266–268 (1981)
Noury, N., Rumeau, P., Bourke, A.K., OLaighin, G., Lundy, J.E.: A proposal for the classification and evaluation of fall detectors. Biomedical Engineering and Research IRBM 29, 340–349 (2008)
Leikas, J., Salo, J., Poramo, R.: Security Alarm System Supports Independent Living of Demented Persons. Gerontechnology: A Sustainable Investment in the Future. Technology and Informatics 48, 402–405 (1998)
Lubinski, R.: Dementia and Communication. B.C. Decker, Inc. (1991)
Yu, X.: Approaches and principles of fall detection for elderly and patient. In: 10th International Conference on e-health Networking, Applications and Services (HealthCom 2008), pp. 42–47 (2008)
Miskelly, F.G.: Assistive technology in elderly care. Age and Ageing 30, 455–458 (2001)
Boissy, P., Choquette, S., Hamel, M., Noury, N.: User-based motion sensing and fuzzy logic for automated fall detection in older adults. Telemedicine Journal and e-Health: the Official Journal of the American Telemedicine Association 13, 683–693 (2007)
Doukas, C., Maglogiannis, I., Tragas, P., Liapis, D., Yovanof, G.: Patient Fall Detection using Support Vector Machines. In: Boukis, C., Pnevmatikakis, A., Polymenakos, L. (eds.) Artificial Intelligence and Innovations 2007: From Theory to Applications. IFIP, vol. 247, pp. 147–156. Springer, Boston (2007)
Lin, C., Hsu, H., Lay, Y., Chiu, C., Chao, C.: Wearable device for real-time monitoring of human falls. Measurement 40, 831–840 (2007)
Noury, N., Barralon, P., Virone, G., Boissy, P., Hamel, M., Rumeau, P.: A smart sensor based on rules and its evaluation in daily routines. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 4, pp. 3286–3289 (2003)
Sarela, A., Korhonen, I., Lotjonen, J., Sola, M., Myllymaki, M.: Ist vivago reg; - an intelligent social and remote wellness monitoring system for the elderly. In: Proceedings of the 4th International IEEE EMBS Special Topic Conference on Information Technology Applications in Biomedicine, pp. 362–365 (2003)
Scanaill, C., Carew, S., Barralon, P., Noury, N., Lyons, D., Lyons, G.: A Review of Approaches to Mobility Telemonitoring of the Elderly in Their Living Environment. Annals of Biomedical Engineering 34, 547–563 (2006)
Chan, M., Campo, E., Estève, D., Fourniols, J.Y.: Smart homes - current features and future perspectives. Maturitas 64, 90–97 (2009)
Alwan, M., Rajendran, P.J., Kell, S., Mack, D., Dalal, S., Wolfe, M., Felder, R.: A Smart and Passive Floor-Vibration Based Fall Detector for Elderly. In: IEEE International Conference on Information & Communication Technologies: from Theory to Applications, ICTTA, vol. 1, pp. 1003–1007 (2006)
Litvak, D., Zigel, Y., Gannot, I.: Fall detection of elderly through floor vibrations and sound. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2008, vol. 2008, pp. 4632–4635 (2008)
Zhang, Z., Kapoor, U., Narayanan, M., Lovell, N.H., Redmond, S.J.: Design of an Unobtrusive Wireless Sensor Network for Nighttime Falls Detection. In: Annual International Conference of the IEEE in Engineering in Medicine and Biology Society, EMBC, pp. 5275–5278 (2011)
Mihailidis, A., Carmichael, B., Boger, J.: The Use of Computer Vision in an Intelligent Environment to Support Aging-in-Place, Safety, and Independence in the Home. Gerontechnology 2, 173–189 (2002)
Zambanini, S., Machajdik, J., Kampel, M.: Early versus Late Fusion in a Multiple Camera Network for Fall Detection. In: 34th Annual Workshop of the Austrian Association for Pattern Recognition (ÖAGM 2010), Zwettl, Austria, vol. 819862, pp. 15–22 (2010)
Jansen, B., Temmermans, F., Deklerck, R.: 3D human pose recognition for home monitoring of elderly. In: Conference of the IEEE on Engineering in Medicine and Biology Society, Lyon, pp. 4049–4051 (2007)
Anderson, D., Keller, J., Skubic, M., Chen, X., He, Z.: Recognizing falls from silhouettes. In: 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2006, New York, pp. 6388–6391 (2006)
Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.: Fall detection from human shape and motion history using video surveillance. In: 21st International Conference on Advanced Information Networking and Applications Workshops, AINAW 2007, Niagara Falls, vol. 2, pp. 875–880 (2007)
Anderson, D., Luke, R.H., Keller, J.M., Skubic, M., Rantz, M., Aud, M.: Linguistic Summarization of Video for Fall Detection Using Voxel Person and Fuzzy Logic. Computer Vision and Image Understanding 113, 80–89 (2009)
Aghajan, H., Wu, C., Kleihorst, R.: Distributed Vision Networks for Human Pose Analysis. In: Mandic, D., Golz, M., Kuh, A., Obradovic, D., Tanaka, T. (eds.) Signal Processing Techniques for Knowledge Extraction and Information Fusion, pp. 181–200. Springer, US (2008)
Oggier, T., Lehmann, M., Kaufmann, R., Schweizer, M., Richter, M., Metzler, P., Lang, G., Lustenberger, F., Blanc, N.: An all-solid-state optical range camera for 3D real-time imaging with sub-centimeter depth resolution (SwissRanger). In: Proceedings of SPIE, vol. 5249, pp. 534–545. SPIE (2004)
Diraco, G., Leone, A., Siciliano, P.: An active vision system for fall detection and posture recognition in elderly healthcare. In: Design, Automation Test in Europe Conference Exhibition (DATE), Dresden, pp. 1536–1541 (2010)
McKenna, S.J., Charif, H.N.: Summarising contextual activity and detecting unusual inactivity in a supportive home environment. Pattern Analysis and Applications 7, 386–401 (2005)
Nait-Charif, H., McKenna, S.: Activity summarisation and fall detection in a supportive home environment. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR, vol. 4, pp. 323–326. IEEE (2004)
Zweng, A., Zambanini, S., Kampel, M.: Introducing a Statistical Behavior Model into Camera-Based Fall Detection. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Chung, R., Hammoud, R., Hussain, M., Kar-Han, T., Crawfis, R., Thalmann, D., Kao, D., Avila, L. (eds.) ISVC 2010, Part I. LNCS, vol. 6453, pp. 163–172. Springer, Heidelberg (2010)
Belbachir, A.N., Lunden, T., Hanák, P., Markus, F., Böttcher, M., Mannersola, T.: Biologically-inspired stereo vision for elderly safety at home. e & i Elektrotechnik und Informationstechnik 127, 216–222 (2010)
Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.: Monocular 3d head tracking to detect falls of elderly people. In: 28th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, EMBS 2006, New York, pp. 6384–6387 (2006)
Smisek, J., Jancosek, M., Pajdla, T.: 3D with Kinect. In: IEEE International Conference on Computer Vision Workshops, ICCV Workshops, pp. 1154–1160. IEEE Computer Society Press, Los Alamitos (2011)
Rougier, C., Auvinet, E., Rousseau, J., Mignotte, M., Meunier, J.: Fall Detection from Depth Map Video Sequences. In: Abdulrazak, B., Giroux, S., Bouchard, B., Pigot, H., Mokhtari, M. (eds.) ICOST 2011. LNCS, vol. 6719, pp. 121–128. Springer, Heidelberg (2011)
Mastorakis, G., Makris, D.: Fall detection system using Kinects infrared sensor. Journal of Real-Time Image Processing (2012)
Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1297–1304 (2011)
Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)
Davis, J., Goadrich, M.: The relationship between Precision-Recall and ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning, ICML 2006, pp. 233–240. ACM Press, New York (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Planinc, R., Kampel, M. (2013). Robust Fall Detection by Combining 3D Data and Fuzzy Logic. In: Park, JI., Kim, J. (eds) Computer Vision - ACCV 2012 Workshops. ACCV 2012. Lecture Notes in Computer Science, vol 7729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37484-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-37484-5_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37483-8
Online ISBN: 978-3-642-37484-5
eBook Packages: Computer ScienceComputer Science (R0)