Abstract
In recent years, many image deblurring algorithms have been proposed, most of which assume the noise in the deblurring process satisfies the Gaussian distribution. However, it is often unavoidable in practice both in non-blind and blind image deblurring, due to the error on the input kernel and the outliers in the blurry image. Without proper handing these outliers, the recovered image estimated by previous methods will suffer severe artifacts. In this paper, we mainly deal with two kinds of non-Gaussian noise in the image deblurring process, inaccurate kernel and compressed blurry image, and find that handling the noise as Laplacian distribution can get more robust result in these cases. Based on this point, the new non-blind and blind image deblurring algorithms are proposed to restore the clear image. To get more robust deblurred result, we also use 8 direction gradients of the image to estimate the blur kernel. The new minimization problem can be efficiently solved by the Iteratively Reweighted Least Squares(IRLS) and the experimental results on both synthesized and real-world images show the efficiency and robustness of our algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wiener, N.: Extrapolation, interpolation and smoothing of stationary time series, New York (1949)
Richardson, W.: Bayesian-based iterative method of image restoration. Journal of the Optical Society of America 62, 55–59 (1972)
Lucy, L.: An iterative technique for the rectification of observed distributions. The Astronomical Journal 79, 745 (1974)
Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60, 259–268 (1992)
Fergus, R., Singh, B., Hertzmann, A., Roweis, S., Freeman, W.: Removing camera shake from a single photograph. ACM Trans. Graph. 25, 787–794 (2006)
Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. 73, 73:1–73:10 (2008)
Levin, A.: Blind motion deblurring using image statistics. In: Advances in Neural Information Processing Systems, vol. 19, p. 841 (2007)
Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-laplacian priors. In: NIPS, vol. 22 (2009)
Bar, L., Kiryati, N., Sochen, N.: Image deblurring in the presence of impulsive noise. International Journal of Computer Vision 70, 279–298 (2006)
Whyte, O., Sivic, J., Zisserman, A.: Deblurring shaken and partially saturated images. In: Computer Vision Workshops (ICCV Workshops), pp. 745–752. IEEE (2011)
Harmeling, S., Sra, S., Hirsch, M., Schölkopf, B.: Multiframe blind deconvolution, super-resolution, and saturation correction via incremental em. In: Proc. ICIP, pp. 3313–3316 (2010)
Cho, S., Wang, J., Lee, S.: Handling outliers in non-blind image deconvolution. In: ICCV, pp. 495–502. IEEE (2011)
Yuan, L., Sun, J., Quan, L., Shum, H.: Progressive inter-scale and intra-scale non-blind image deconvolution. ACM Trans. Graph. 27 (2008)
Ben-Ezra, M., Nayar, S.: Motion-based motion deblurring. IEEE Trans. on PAMI 26, 689–698 (2004)
Tai, Y., Du, H., Brown, M., Lin, S.: Image/video deblurring using a hybrid camera. In: CVPR, pp. 1–8 (2008)
Cho, S., Lee, S.: Fast motion deblurring. ACM Trans. Graph. 28, 145:1–145:8 (2009)
Levin, A., Weiss, Y., Durand, F., Freeman, W.: Understanding and evaluating blind deconvolution algorithms. In: CVPR (2009)
Xu, L., Jia, J.: Two-Phase Kernel Estimation for Robust Motion Deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010)
Levin, A., Weiss, Y., Durand, F., Freeman, W.: Efficient marginal likelihood optimization in blind deconvolution. In: CVPR (2011)
Cho, T., Paris, S., Horn, B., Freeman, W.: Blur kernel estimation using the radon transform. In: CVPR (2011)
Kim, S., Tai, Y., Kim, S., Brown, M., Matsushita, Y.: Nonlinear camera response functions and image deblurring. In: CVPR (2012)
Tai, Y., Lin, S.: Motion-aware noise filtering for deblurring of noisy and blurry images. In: CVPR (2012)
Osher, S., Rudin, L.: Feature-oriented image enhancement using shock filters. SIAM Journal on Numerical Analysis 27, 919–940 (1990)
Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: CVPR (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xu, Y., Hu, X., Peng, S. (2013). Robust Image Deblurring Using Hyper Laplacian Model. In: Park, JI., Kim, J. (eds) Computer Vision - ACCV 2012 Workshops. ACCV 2012. Lecture Notes in Computer Science, vol 7729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37484-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-37484-5_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37483-8
Online ISBN: 978-3-642-37484-5
eBook Packages: Computer ScienceComputer Science (R0)