Abstract
Given a hand-held RGB-D camera (e.g. Kinect), methods such as Structure from Motion (SfM) and Iterative Closest Point (ICP), perform poorly when reconstructing indoor scenes with few image features or little geometric structure information. In this paper, we propose to extract high level primitives–planes–from an RGB-D camera, in addition to low level image features (e.g. SIFT), to better constrain the problem and help improve indoor 3D reconstruction. Our work has two major contributions: first, for frame to frame matching, we propose a new scheme which takes into account both low-level appearance feature correspondences in RGB image and high-level plane correspondences in depth image. Second, in the global bundle adjustment step, we formulate a novel error measurement that not only takes into account the traditional 3D point re-projection errors, but also the planar surface alignment errors. We demonstrate with real datasets that our method with plane constraints achieves more accurate and more appealing results comparing with other state-of-the-art scene reconstruction algorithms in aforementioned challenging indoor scenarios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Henry, P., Krainin, M., Ren, X., Herbrt, E., Fox, D.: Rgb-d mapping: Using depth cameras for dense 3d modeling of indoor environments. ISER (2010)
Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: Kinectfusion: Real-time dense surface mapping and tracking. In: IEEE ISMAR (2011)
Neumann, D., Lugauer, F., Bauer, S., Wasza, J., Hornegger, J.: Real-time rgb-d mapping on the gpu using the random ball cover data structure. In: IEEE ICCV/CDC4CV (2011)
Lieberknecht, S., Huber, A., Ilic, S., Benhimane, S.: Rgb-d camera-based parallel tracking and meshing. In: ISMAR (2011)
Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. International Journal of Computer Vision (2007)
Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: Exploring image collections in 3d. ACM Transactions on Graphics (2006)
Crandall, D., Owens, A., Snavely, N., Huttenlocher, D.P.: Discrete-continuous optimization for large-scale structure from motion. In: CVPR (2011)
Sinha, S.N., Steedly, D., Szeliski, R.: Piecewise planar stereo for image-based rendering. In: ICCV (2009)
Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Manhattan-world stereo. In: CVPR (2009)
Gallup, D., Frahm, J.-M.: Piecewise planar and non-planar stereo for urban scene reconstruction. In: CVPR (2010)
Lee, G.H., Fraundorfer, F., Pollefeys, M.: Mav visual slam with plane constraint. In: IEEE Int. Conf. on Robotics and Automation (2011)
Pathak, K., Birk, A., Vaskevicius, N., Poppinga, J.: Fast registration based on noisy planes with unknown correspondesces for 3-d mapping. IEEE Transactions on Robotics (2010)
Pathak, K., Vaskevicius, N., Poppinga, J., Pfingsthorn, M., Schwertfeger, S., Birk, A.: Fast 3d mapping by matching planes extracted from range sensor point-clouds. IROS (2009)
Pollefeys, M., Van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.: Visual modeling with a hand-held camera. IJCV (2004)
Steffen, R., Frahm, J.-M., Förstner, W.: Relative Bundle Adjustment Based on Trifocal Constraints. In: Kutulakos, K.N. (ed.) ECCV 2010 Workshops, Part II. LNCS, vol. 6554, pp. 282–295. Springer, Heidelberg (2012)
Poppinga, J., Vaskevicius, N., Birk, A., Pathak, K.: Fast plane detection and polygonalization in noisy 3d range images. IROS (2008)
Borrmann, D., Elseberg, J., Lingemann, K., Nuhter, A.: The 3d hough transform for plane detection in point clouds: A review and a new accumulator design. 3D Research 02, 1330–1334 (2011)
Raguram, R., Frahm, J.-M., Pollefeys, M.: A Comparative Analysis of RANSAC Techniques Leading to Adaptive Real-Time Random Sample Consensus. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 500–513. Springer, Heidelberg (2008)
Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. of the ACM 24 (1981)
Lourakis, M.I.A.: Sparse Non-linear Least Squares Optimization for Geometric Vision. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 43–56. Springer, Heidelberg (2010)
Grisetti, G., Grzonka, S., Stachniss, C., Pfaff, P., Burgard, W.: Efficient estimation of accurate maximum likelihood maps in 3d. IROS (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dou, M., Guan, L., Frahm, JM., Fuchs, H. (2013). Exploring High-Level Plane Primitives for Indoor 3D Reconstruction with a Hand-held RGB-D Camera. In: Park, JI., Kim, J. (eds) Computer Vision - ACCV 2012 Workshops. ACCV 2012. Lecture Notes in Computer Science, vol 7729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37484-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-37484-5_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37483-8
Online ISBN: 978-3-642-37484-5
eBook Packages: Computer ScienceComputer Science (R0)