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Abstract This paper explores the modelling capacities of a new class of P systems,
called kernel P systems (kP systems). A specific language for describing kP systems
and its translation into Promela, the specification language of Spin, are described.
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This Promela specification has been further used for simulation and property veri-
fication with the Spin model checker. Also, a parallel implementation on GPU
parallel architectures, realized using CUDA, is presented and the results are com-
pared with the ones obtained using Promela and Spin. A case study, namely the
Subset sum problem, which has been modelled with kernel P systems and further
implemented in Promela is presented.
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1 Introduction

Membrane computing, initiated in the seminal work of Păun [1], is a new branch of
natural computing, whose models, membrane systems or P systems, are inspired
from the structure and the functioning of the living cell and of other more complex
systems, like tissues, organs or populations of cells [2]. In the last years, many P
system models have been proposed and important developments have been
reported [3], concerning the computational power of different variants, their
capabilities to solve NP-complete problems, decidability or complexity aspects.
Furthermore, these distributed parallel computing models have been successfully
used to model, simulate and formally verify various systems [3, 4].

Kernel P systems (kP systems, for short) represent a new class of membrane
systems, recently proposed in [5]. They use well-known features of P systems and
also include new elements, in order to provide a coherent and comprehensive
description of various classes of P systems and allow the possibility of integrating
different types of P systems into the same formalism. For example, neural-like P
systems and P systems with active membranes have been simulated by the newly
introduced kP systems [5]. Other initial case studies, applying kP systems to solve
the 3-colouring problem, previously solved with tissue P systems, have been
presented in [6, 7] and analysed in terms of efficiency and complexity.

The expressive power of kP systems is further investigated in this paper and
their modelling capacity is illustrated on a new case study, representing another
NP-complete problem. Furthermore, compared with [6], additional modalities to
implement kP systems are given and the model checker Spin [8] has been used to
simulate and verify properties expressed for the Promela model. A parallel
implementation of P systems using GPU and CUDA is also presented, and some
initial results are reported.



2 Background

In this section we formally introduce a particular type of kernel P systems, namely
simple kernel P systems, or skP systems for short [6]; a description of the general
kP system model is provided in [5]. The skP systems have a graph-like structure,
similar to tissue P systems, compartments, multisets of objects in them and rules of
two types: (a) object processing and (b) system structure rules. The kP system
rules have guards, with activators and inhibitors, described in a more general way
than in traditional P systems. The execution strategy applied in such systems will
be maximal parallelism, traditionally used in membrane computing, but, in the
context of general kP system formalism, other types of strategies can be defined.

In the rest of the paper we use the following notations. For an alphabet A, the
set of all strings over A is denoted by A*. When the empty string, k;is not con-
sidered, then the set is denoted by A+. If u and v are strings over A, then their
concatenation is given by uv. The length of the string u is denoted by |u|. If u 2 A�

and a 2 A then |u|a denote the number of occurrences of symbol a in string u. A
multiset m over a set A is a pair A; fð Þ where f : A! N is a mapping. The support
of the multiset m is defined as supp mð Þ ¼ x 2 Ajf xð Þ[ 0f g: If m = (A, f) is a
finite multiset over A and supp mð Þ ¼ a1; . . .akf g; then it will be denoted as

m ¼ af a1ð Þ
1 ; . . .; af akð Þ

k

n o
or represented by a string af a1ð Þ

1 . . .af akð Þ
k :

Definition 1 Let Rel ¼ \; � ; 6¼; � ; [f g be a set of relational operators. Let
A be a nonempty finite set and denote �A ¼ �aja 2 Af g: A multiset over A [ �A with
relational operators from Rel is an expression w ¼ h1an1

1 . . .hkank
k ; where an1

1 . . .ank
k

is a string over A [ �A (in which ai and aj are not necessarily distinct, 1� i\j� k),
and hj 2 Rel; for each j, 1� j� k:

Compartment 0
(label, multisets , Ri)

rule unit

… …

Compartment n
(label, multisets , Ri)

rule unit

… …

… …
1 2 1 2n n

thread

… …

Block 0

thread

… …

Block n

… …
1 2 n 1 2 nGPU

device

Kernel
P system

Shared memory Shared memory

Xi:000
Sum=0

001
Sum=0

000
Sum=0

001
Sum=6

011
Sum=6

000
Sum=0

010
Sum=0

010
Sum=3

110
Sum=3

000
Sum=0

100
Sum=0

010
Sum=3

110
Sum=5

000
Sum=0

100
Sum=2

001
Sum=6

011
Sum=9

001
Sum=6

011
Sum=9

Step 

(a)

(b)1

Step 2

Step 3

Step 4
110

Sum=5
110

Sum=5

Sum=5
R2,2n+1

Step 5

C1:R1,n+4

C1:R1,n+4 C0:Yes

Step 6

Step 7

Fig. 1 a The procedure of the kernel P system for solving the subset sum for n = 3. b Basic
design of the simulation



Definition 2 A guard g is a finite disjunction of expressions w introduced by
Definition 1.

A particular case of a guard g is the empty set. In this case the guard is omitted.
The elements of the set A are considered activators and those of �A inhibitors. For
example, a guard g ¼\a3 ¼ �b is true if the current multiset contains at most two
objects a and no b, for instance a2c.

Definition 3 Given two non empty finite sets A (alphabet), L (labels), and l 2 L;
the set of rules associated with l is denoted by Rl. A rule from Rl has one of the
following two forms: (a) x½ �l! y1½ �l1 . . . yh½ �lh gf g; where x 2 A; yj 2 A�; lj 2 L for
all 1� j� h; and g is a guard (h-membrane division rule); (b) x! y gf g; where
x 2 Aþ; y is a string over A 9 L, y ¼ a1; t1ð Þ. . . ah; thð Þ; with aj 2 A; tj 2 L and g is
a guard (rewriting and communication rule).

Definition 4 Given two nonempty finite sets A, L, a compartment, C, is a tuple (l,
w0, Rl), where l 2 L;w0 is a multiset over A, and Rl is a set of rules associated with
l.

A compartment can be viewed as a region labelled by an element l of L which
initially contains a multiset w0 of objects (elements of A) and such that it has
associated a set Rl of rules.

Definition 5 Let r be a rule from Rl, a set of rules associated with a compartment
C = (l, w0, Rl), such that the guard of r is g. The guard g is considered true at an
instant when the current multiset of compartment C is z if and only if the following
happens: (a) if g ¼ h1an1

1 . . .hkank
k ;then for every j, 1� j� k; either (i) if aj 2 A then

jzjaj
hjnj holds, or (ii) if aj 2 �A; then jzjaj

hjnj does not hold; (b) if g is a finite

nonempty disjunction of multisets over A [ �A with relational operators from Rel,
g = w1|… | wp, then there exists j, 1� j� p; such that wj is true, according to (a);
(c) if g is the empty set then it is always evaluated true.

Definition 6 A simple kernel P (skP) system of degree n� 1 is a tuple, skP ¼
A; L; IO;C1; . . .;Cn; l; i0ð Þ where: A and L are nonempty finite sets; IO is a finite

alphabet IO � A; C1, … , Cn are compartments; l ¼ V ;Eð Þ is an undirected graph,
where V � L are vertices and E the edges; i0 2 L:

A skP system, skP ¼ A; L; IO;C1; . . .;Cn; l; i0ð Þ; can be viewed as a set of
n compartments, C1; . . .;Cn; interconnected by edges from E, of an undirected
graph l: The elements of the set A are called objects and the elements of L are
called labels. IO is the alphabet of the environment objects. Each compartment is
identified by a label of L, has initially a multiset over A, and a finite set of rules.
The compartment receiving the result of a computation is denoted by i0; in the
sequel this will always be the environment.

A h-membrane division rule x½ �l! y1½ �l1 . . . yh½ �lh gf g associated with a com-
partment C = (l, w0, Rl) is applicable at a given instant to the current multiset z, if
the guard g is evaluated true with respect to z and the object x is in the multiset
z. When applying such a rule to x, the compartment labelled l will be replaced by



h compartments labelled l1,…,lh and x is replaced by multiset yj in compartment lj;
the content of l, but x, after using all the applicable rewriting and communication
rules is copied in each of these compartments; all the links of l are inherited by
each of the newly created compartments. A rewriting and communication rule
x! a1; t1ð Þ. . . ah; thð Þ gf g associated with a set of rules, Rl, of a compartment
C = (l,w0,Rl), is applicable at a given moment to the current multiset z, if the
guard g is evaluated true, x is contained in z and the target tj 2 L; 1� j� h; must
be either the label of the current compartment, l, or of an existing neighbour of it

l; tj

� �
2 E

� �
: When applying the rule, objects aj are sent to the compartment

labelled by tj, for each j, 1� j� h: If a target, tj, refers to a label that appears more
than once then one of the involved compartments will be non-deterministically
chosen. When tj indicates the label of the environment, then aj is sent to the
environment.

3 Modelling with Kernel P Systems

In order to illustrate the modelling and expressive power of skP systems, as well as
their efficiency, the Subset Sum problem [9, 10] has been considered. This problem
can be formulated as follows: given a finite set V, a function weight on V with
positive integer values (an additive function), a number k representing the target
sum, decide if there exists a subset W of V, such that weight Wð Þ ¼ k:

Theorem 1 The Subset Sum problem for a set with n elements can be solved by a
skP system and an answer to whether a solution exists or not is obtained in at most
n ? 3 steps using maximum 2n ? 1 compartments.

Proof A sketch of the proof is provided below. For a given set V ¼ v1; . . .; vnf g;
with weight við Þ ¼ ki; where ki is a positive integer, 1� i� n; we build the fol-
lowing skP system, which depends on n, (for checking whether there is a subset,
W, with weight Wð Þ ¼ k), skP nð Þ ¼ A; L; IO; l;C1;C2; 0ð Þ where

• A ¼ A1; . . .;Anf g [ B1; . . .;Bnf g [ v1; . . .; vnf g [ v; S; T;F;X; Y ; yes; nof g
where Ai, 1� i� n are used in the division process of C2 compartments, until the
X element is used to control the end of the process; Bi, 1� i� n stand for the
n elements in set; vi, 1� i� n are used to represent the weight of each element,
and v the total weight for each compartment; Y is used to trigger the evaluation
of weight v against k, generating T (true) or F (false); yes, no are the two
possible answers depending on the objects T, F;

• L = {0, 1, 2}; 0 is the label of the environment, 1 and 2 of the compartments;
• IO consists of yes, no; after n ? 3 steps, one of them will be sent out;
• C1 ¼ 1;w1;0;R1

� �
;C2 ¼ 2;w2;0;R2

� �
; where w1;0 ¼ S;w2;0 ¼ A1code nð Þ; with

code nð Þ ¼ vk1
1 . . .vkn

n being the code of the weights of the elements of V;
• l is given by the graph with edge 1; 2ð Þ;



• R1 contains: r1;1 : S! yes; 0ð Þ � Tf g; r1;2 : S! no; 0ð Þ �F� T
� �

; r1, 1 or r1, 2

sends into the environment the answer yes or no, respectively;
• R2 contains: membrane division rules r2;i : Ai½ �2! BiAiþ1½ �2 Aiþ1½ �2;

1� i\n; r2;n : An½ �2! BnX½ �2 X½ �2; these rules generate in n steps all the subsets
of V (2n subsets); each of them being a potential subset W; rewriting rules
r2;nþi : vi ! v ¼ Bi ¼ Xf g; 1� i� n; r2;2nþ1 : X ! Y and rewriting and com-
munication rules r2;2nþ2 : Y ! F; 1ð Þ 6¼ vk

� �
; r2;2nþ3 : Y ! T ; 1ð Þ ¼ vk

� �
:

The computation leads to an answer, yes or no, in nþ 3 steps.

4 Experimental Evaluation

This section is devoted to skP system simulation and verification of certain
properties using the Spin model checker [8]. The skP system is converted into
Promela, the specification language for Spin. This is obtained automatically from
the skP system specification. A simple specification language allows to express
skP system elements and declarations in a simple, concise and intuitive way. The
complete implementation of the Subset Sum problem as modelled with kP systems
is provided at [11]. Spin [8] is a very popular simulator and model checker tool,
purposely built for the formal verification of distributed software systems.

We will refer to an instance of the Subset Sum problem where the number of
elements in our set is 10 (the example is available at [11]). Given this parameter, we
define a skP system, according to the algorithm illustrated in the previous section,
that requires two active compartments, an alphabet of 38 symbols and a total of
25 rules. A successful simulation requires 13 computational steps, the outcome of
which is a ‘‘yes’’ symbol that is sent to the environment, indicating that there is at
least one subset with the sum of its elements equal to the specified value. In the
context of membrane computing, Spin has been successfully used to formally verify
various types of P systems [12, 13]. The properties we investigate are expressed as
LTL formulae and their validity is assessed with respect to our model, an instance of
the Subset Sum problem having 10 set elements. The key insight of our approach is
the distinction between a P system step and a generic step of a Promela model, which
takes into account each atomic instruction. However, a P system’s state is reached
only after the maximally parallel application of the rules in every compartment.
Hence, an auxiliary variable is introduced, indicative of whether the system has
reached a state or it is in the process of executing rules. This strategic flag is then
mentioned in the LTL properties, instructing Spin to only consider states with
relevant configurations (i.e. P system states) in its evaluation. A common property
pattern in our study was that of necessary precedence: if a certain condition in-
variantPrecond holds for a state, then another condition invariantPostcond must
hold in the next state. This is expressed in LTL as: ltl p5 {[] (!(invariantPrecond) ||
X(!isPsystemStep U(invariantPostcond && isPsystemStep)) || !isPsystemStep)},



where invariantPrecond and invariantPostcond are the two subject conditions and
isPsystemStep is a Boolean variable which acts as a filter on states, as we are only
interested if the property holds for a P system state. A concrete formula that
exemplifies this pattern is ltl p4 {[] (!(ms[1].x[@S] == 1 && ms[1].x[@F] == 1) ||
X(!isPsystemStep U (ms[2].x[@no] == 1 && isPsystemStep)) || !isPsystemStep)},
which asserts that if in a certain state the membrane of type ‘‘1’’ contains both an
S and an F object, then, in the next state, the environment will have received a ‘‘no’’
object. Another interesting property successfully validated states that if a Y symbol
has been generated into the compartments of type 2, then, at the next P system step,
the multiplicity of the object T in the compartment of type 1 will be equal to the
number of solutions of the problem. The property is captured by the following
formula: ltl p6 {[] (!(invariantPrecond) || X(!isPsystemStep U(solution-
Count == TCount && isPsystemStep)) || !isPsystemStep)}.

5 Implementation of kP Systems Using GPUs

In order to solve the Subset Sum problem (SSP) using GPUs, we make the following
notations. We start with a membrane structure l = [[]1[]2]0, compartment labels
L = {0, 1, 2} and symbols A1, …, An ? 4, B1, …, Bn, v1, …, vn, T, Y, K, V, yes, no,
where Ai stands for the ith step; vi represents the i element of the set; Bi means
whether vi is in the subset or not; object K is the desired subset sum; V is a generic
element counting for the weight of the subset; Y is an object which would be changed
into a flag and be sent to the compartment C1 to show the objects in this compartment
are a solution and T is a flag just mentioned; yes and no are the two possible answers
sent from C1 to the environment (C0) at the end of the computation. The compart-
ments are C0 ¼ ;; C1 ¼ 1;O1;R1ð Þ; C2 ¼ 2;O2;R2ð Þ; where O1 ¼ A1f g;O2 ¼

A1; v
k1
1 . . .vkn

n ; Y
� �

;where vi is the value of subset ith element and ki is its weight. All
the rules are executed in a maximally parallel way and are described as follows. It is
worth pointing out that there are some differences between the rules here and the
rules in Theorem 1. The rules considered here are used to stop the execution in some
compartments when the current value inside the compartment is bigger than the
desired subset sum, thus the execution time and memory required can be saved to a
certain degree. R1 contains r1;i : Ai ! Aiþ1; 0\i\nþ 4; r1;nþ4 : T !
yes; 0ð Þ Anþ4f g; r1;nþ5 : Anþ4 ! no; 0ð Þ T

� �
; R2 contains r2;i : Ai½ �2!

Aiþ1;Bi½ �2 Aiþ1½ �2 \Vk
� �

; 0\i\nþ 1; r2;nþi : vi ! V ¼ Bif g; 0\i\nþ 1; r2;2nþ1

: Y ! T; 1ð Þ ¼ VKf g:

Example Figure 1a shows the procedure for solving the Subset Sum problem for 3
elements with weights 2, 3, 6 and K = 5. The compartments on the left side in
Steps 2–4 could only execute r2, n+1 for the guards of the rest rules, which requires
the Sum is smaller than or equal to K, in compartment C2.



Figure 1b shows the basic design of the simulation. We define the GPU blocks
as the compartments and the GPU threads as units which execute the rules. Each
thread and block runs in parallel. All the parameters in each compartment are sent
to the GPU global memory. To decrease the time for reading data, we store
constants and rules, which are never changed, into the constant memory or texture
memory. For the same reason, the compartment parameters are sent to the shared
memory in blocks, when the compartment chooses and applies the rules. Because
of the restriction of GPU on the number of blocks and threads, the number of the
compartments and rules should be less than 65536 and 512, respectively.

This simulation is performed in two stages: selection and execution. The former
stage is to search for the rules to be executed in each compartment. The latter stage
is used for performing the rules selected at the previous stage. According to the
kernel P system definition, the selection stage includes the processes of checking
the guard and judging whether one rule is able to be performed. At the execution
stage, the compartment can receive new objects, rewriting objects, transition
objects. The membrane structure may be changed due to division.

The platform environment is as follows: CPU i5-3240M 2.50 GHz, Memory
8 GB DDR3, NVIDIAGeForce GT650M 1 GB DDR3, Operating system: Win-
dows 7 Professional. The experimental results are shown in Fig. 2 (The number of
the use of r2, n+i will be very large with the increase of the value of ki, so the value
of each weight, in our simulation, is less than 200).

It can be seen from the results shown in Fig. 2 that as the number of subsets
increases, the difference of the elapsed time between GPU and CPU becomes
larger, and that the elapsed time on GPU is about 10 times faster than that on CPU.

6 Conclusions

This paper illustrates the modelling capabilities of the new class of kP systems on
solving a well-known NP-complete problem, namely the Subset Sum. For this
model, a kP system solution is provided and a Promela executable specification
has been written and used with the Spin model checker for simulation and property
verification. A parallel implementation on GPUs is presented and the results
obtained show the efficiency of this implementation wrt CPU one.

Fig. 2 Comparison of the elapsed time
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