Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 212))

Abstract

The melting temperatures MgSiO3 perovskite have been calculated in previous studies by using MD simulation, but considerable discrepancy of melting temperature exists between these simulations. In this contribution, comparisons of potential energy curves are performed to explain the discrepancy. To further investigate the influence of the interaction potential parameters on the MD simulation result, a new set of potential parameters is developed based on combining two fitting potential parameters of previous studies, and is applied in the present study. The melting temperatures are calculated, and also compare with those derived from previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oganov AR, Brodholt JP, Price GD (2001) Earth planet. Sci Lett 184:555

    Google Scholar 

  2. Fiquet G, Dewaele A, Andrault D, Kunz M (2000) Geophys Res Lett 27:21

    Google Scholar 

  3. Shim SH, Duffy TS, Shen GY (2001) Science 293:2437

    Google Scholar 

  4. Chaplot SL, Choudhury N, Rao KR (1998) Am Miner 83:937

    Google Scholar 

  5. Zerr A, Boehler R Science (1993) 262:553

    Google Scholar 

  6. Heinz DL, Jeanloz R (1987) Geophys J Res 92:11437

    Google Scholar 

  7. Knittle E, Jeanloz R (1989) Geophys Res Lett 16:421

    Google Scholar 

  8. Sweeney JS, Heinz DL (1993) Geophys Res Lett 20:855

    Google Scholar 

  9. Liu ZJ, Cheng XL, Yang XD, Zhang H, Cai LC (2006) Chin Phys 15:1009

    Google Scholar 

  10. Liu ZJ, Sun XW, Yang XD, Cheng XL, Guo YD (2006) Chin J Chem Phys 19:311

    Google Scholar 

  11. Alfe D (2004) J Phys Condens Matter 16:S973

    Google Scholar 

  12. Belonoshko AB, Dubrovinski LS (1997) Am Mineral 82:441

    Google Scholar 

  13. Aguado A, Madden PA (2005) Phys Rev Lett 94:068501

    Google Scholar 

  14. Matsui M, Price GD (1991) Nature 351:735

    Google Scholar 

  15. Gu YK, Qi YH, Qin YJ (2003) Chin J Chem Phys 16:385

    Google Scholar 

  16. Wei YH, Ma XL, Zhang GY Hou Q, Wang H.C, Sun YS (2004) Chin J Chem Phys 17:443

    Google Scholar 

  17. Liu ZJ, Cheng XL, Chen XR, Zhang FP (2005) Chin J Chem Phys 18:193

    Google Scholar 

  18. Liu ZJ, Cheng XL, Zhang FP (2006) Chin J Chem Phys 19:65

    Google Scholar 

  19. Ewald PP (1921) Annal Physik 64:253

    Google Scholar 

  20. Fincham D (1994) J Mol Graphic 12:29

    Google Scholar 

  21. Fincham D (1994) J Mol Graphic 12:29

    Google Scholar 

  22. Catlow CRA (1989) J Chem Soc Faraday Trans 2(85):335

    Google Scholar 

  23. Belonoshko AB (1994) Geochim Cosmochim Atca 58:4039

    Google Scholar 

  24. Belonoshko AB, Dubrovinski LS (1996) Am Mineral 81:303

    Google Scholar 

  25. Matsui M (1996) Phys Chem Miner 23:345

    Google Scholar 

  26. Kuklju MM (2000) J Phys: Condens Matter 12:2953

    Google Scholar 

  27. Kramer GJ, Farragher NP, van Beest BWH (1991) Phys Rev B 43:5068

    Google Scholar 

  28. Catlow CRA (1985) J Phys C: Solid State Phys 18:1149

    Google Scholar 

  29. Pandey R, Gale JD, Sampth SK, Recio (1995) JM J Am Ceram Soc 82:125

    Google Scholar 

  30. Bush TS, Gale JD, Catlow CRA, Battle PD (1994) J Mater Chem 4:83

    Google Scholar 

  31. Cohen RE, Gong Z (1994) Phys Rev B 50:12301

    Google Scholar 

  32. Lu K, Li Y (1998) Phys Rev Lett 80:4474

    Google Scholar 

  33. Luo SN (1985) Ahrens TJ Phys Rev A 31:1695

    Google Scholar 

  34. Luo SN, Ahrens TJ (2005) Appl Phys Rev Lett 94:068501

    Google Scholar 

  35. Fecht HJ, Johnson WL (1983) Nature 334:50

    Google Scholar 

  36. Tallon JL (1989) Nature 342:658

    Google Scholar 

  37. Rethfeld B, Sokolowski-Tinten K, von der linde D, Anisimow SI (2002) Phys Rev B 65:092103

    Google Scholar 

Download references

Acknoeledgments

This work was supported by the fundamental Research Funds for the Central Universities (Grant No. 31920130014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Q. (2013). Influence of Potential Parameters on the Melting Temperature of MgSiO3 Perovskite. In: Yin, Z., Pan, L., Fang, X. (eds) Proceedings of The Eighth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), 2013. Advances in Intelligent Systems and Computing, vol 212. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37502-6_133

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37502-6_133

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37501-9

  • Online ISBN: 978-3-642-37502-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics