Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 304))

Abstract

We start by providing an overview of research on probabilistic spatiotemporal databases. The bulk of the paper is a review of our previous results about probabilistic spatiotemporal databases using the SPOT approach. Presently these results are scattered in various papers and it is useful to provide a uniform overview. We also present numerous interesting research problems using the SPOT framework for probabilistic spatiotemporal databases that await further work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Arge, L., Erickson, J.: Indexing moving points. Journal of Computer and System Sciences 66(1), 207–243 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying continuous time markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  3. Barbará, D., Garcia-Molina, H., Porter, D.: The management of probabilistic data. IEEE TKDE 4(5), 487–502 (1992)

    Google Scholar 

  4. Benjelloun, O., Sarma, A.D., Halevy, A.Y., Widom, J.: Uldbs: Databases with uncertainty and lineage. In: VLDB, pp. 953–964 (2006)

    Google Scholar 

  5. Bennett, B.: Modal logics for qualitative spatial reasoning. Journal of the Interest Group on Pure and Applied Logic 4, 23–45 (1996)

    MATH  Google Scholar 

  6. Brusoni, V., Console, L., Terenziani, P., Pernici, B.: Extending temporal relational databases to deal with imprecise and qualitative temporal information. In: Clifford, S., Tuzhilin, A. (eds.) Intl. Workshop on Recent Advances in Temporal Databases, pp. 3–22. Springer (1995)

    Google Scholar 

  7. Cao, H., Wolfson, O., Trajcevski, G.: Spatio-temporal data reduction with deterministic error bounds. VLDB Journal 15, 211–228 (2006)

    Article  Google Scholar 

  8. Cavallo, R., Pittarelli, M.: The theory of probabilistic databases. In: VLDB, pp. 71–81 (1987)

    Google Scholar 

  9. Chen, Y.F., Qin, X.L., Liu, L.: Uncertain distance-based range queries over uncertain moving objects. J. Comput. Sci. Technol. 25(5), 982–998 (2010)

    Article  MathSciNet  Google Scholar 

  10. Chung, B.S.E., Lee, W.C., Chen, A.L.P.: Processing probabilistic spatio-temporal range queries over moving objects with uncertainty. In: EDBT, pp. 60–71 (2009)

    Google Scholar 

  11. Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: an overview. Fundam. Inf. 46(1-2), 1–29 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Dai, X., Yiu, M.L., Mamoulis, N., Tao, Y., Vaitis, M.: Probabilistic spatial queries on existentially uncertain data. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 400–417. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB J 16(4), 523–544 (2007)

    Article  Google Scholar 

  14. Dekhtyar, A., Dekhtyar, M.I.: Possible worlds semantics for probabilistic logic programs. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 137–148. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Dey, D., Sarkar, S.: A probabilistic relational model and algebra. ACM Trans. Database Syst. 21(3), 339–369 (1996)

    Article  Google Scholar 

  16. Dubois, D., Prade, H.: Processing fuzzy temporal knowledge. IEEE Transactions on Systems, Man and Cybernetics 19(4), 729–744 (1989)

    Article  MathSciNet  Google Scholar 

  17. Dutta, S.: Generalized events in temporal databases. In: Proc. 5th Intl. Conf. on Data Engineering, pp. 118–126 (1989)

    Google Scholar 

  18. Eiter, T., Lukasiewicz, T., Walter, M.: A data model and algebra for probabilistic complex values. Ann. Math. Artif. Intell. 33(2-4), 205–252 (2001)

    Article  MathSciNet  Google Scholar 

  19. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Inf. Comput. 87(1/2), 78–128 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fusun Yaman, D.N., Subrahmanian, V.: The logic of motion. In: Proc. 9th International Conference on the Principles of Knowledge Representation and Reasoning (KR 2004), pp. 85–94 (2004)

    Google Scholar 

  21. Fusun Yaman, D.N., Subrahmanian, V.: Going far, logically. In: Proc. IJCAI 2005, pp. 615–620 (2005)

    Google Scholar 

  22. Fusun Yaman, D.N., Subrahmanian, V.: A motion closed world assumption. In: Proc. IJCAI 2005, pp. 621–626 (2005)

    Google Scholar 

  23. Cohn, A.G., Magee, D.R., Galata, A., Hogg, D.C., Hazarika, S.M.: Towards an architecture for cognitive vision using qualitative spatio-temporal representations and abduction. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds.) Spatial Cognition III. LNCS (LNAI), vol. 2685, pp. 232–248. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. Gabelaia, D., Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: On the computational complexity of spatio-temporal logics. In: FLAIRS Conference, pp. 460–464 (2003)

    Google Scholar 

  25. Gadia, S., Nair, S., Poon, Y.: Incomplete infromation in relational temporal databases. In: Proc. Intl. Conf. on Very Large Databases (1992)

    Google Scholar 

  26. Galton, A.: Temporal logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, fall 2008 edn. (2008)

    Google Scholar 

  27. Grant, J., Parisi, F., Parker, A., Subrahmanian, V.S.: An agm-style belief revision mechanism for probabilistic spatio-temporal logics. Artif. Intell. 174(1), 72–104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Güntzer, U., Kiessling, W., Thöne, H.: New direction for uncertainty reasoning in deductive databases. In: Proceedings of the 1991 ACM SIGMOD International Conference on Management of Data, SIGMOD 1991, pp. 178–187. ACM, New York (1991), http://doi.acm.org/10.1145/115790.115815

    Chapter  Google Scholar 

  29. Hadjieleftheriou, M., Kollios, G., Tsotras, V.J., Gunopulos, D.: Efficient indexing of spatiotemporal objects. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 251–268. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  30. Hansson, H., Jonsson, B.: Logic for reasoning about time and reliability. Formal Asp. Comput. 6(5), 512–535 (1994)

    Article  MATH  Google Scholar 

  31. Jampani, R., Xu, F., Wu, M., Perez, L.L., Jermaine, C., Haas, P.J.: MCDB: a monte carlo approach to managing uncertain data. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 687–700. ACM, New York (2008)

    Chapter  Google Scholar 

  32. Jeansoulin, R., Papini, O., Prade, H., Schockaert, S.: Introduction: uncertainty issues in spatial information. In: Jeansoulin, R., Papini, O., Prade, H., Schockaert, S. (eds.) Methods for Handling Imperfect Spatial Information. STUDFUZZ, vol. 256, pp. 1–14. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  33. Kifer, M., Li, A.: On the semantics of rule-based expert systems with uncertainty. In: ICDT, pp. 102–117 (1988)

    Google Scholar 

  34. Koch, C., Olteanu, D.: Conditioning probabilistic databases. Proceedings of the VLDB Endowment archive 1(1), 313–325 (2008)

    Google Scholar 

  35. Kollios, G., Gunopulos, D., Tsotras, V.J.: On indexing mobile objects. In: Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 261–272. ACM, New York (1999)

    Chapter  Google Scholar 

  36. Koubarakis, M.: Database models for infinite and indefinite temporal information. Information Systems 19(2), 141–173 (1994)

    Article  Google Scholar 

  37. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)

    Google Scholar 

  38. Lakshmanan, L.V., Sadri, F.: Modeling uncertainty in deductive databases. In: Karagiannis, D. (ed.) DEXA 1994. LNCS, vol. 856, pp. 724–733. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  39. Lakshmanan, L.V.S., Shiri, N.: A parametric approach to deductive databases with uncertainty. IEEE Trans. on Knowl. and Data Eng. 13(4), 554–570 (2001)

    Article  Google Scholar 

  40. Lian, X., Chen, L.: Probabilistic group nearest neighbor queries in uncertain databases. IEEE Transactions on Knowledge and Data Engineering 20(6), 809–824 (2008), http://doi.ieeecomputersociety.org/10.1109/TKDE.2008.41

    Article  Google Scholar 

  41. Lukasiewicz, T.: Probabilistic logic programming. In: ECAI, pp. 388–392 (1998)

    Google Scholar 

  42. Lukasiewicz, T., Kern-Isberner, G.: Probabilistic logic programming under maximum entropy. In: Hunter, A., Parsons, S. (eds.) ECSQARU 1999. LNCS (LNAI), vol. 1638, pp. 279–292. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  43. Merz, S., Wirsing, M., Zappe, J.: A spatio-temporal logic for the specification and refinement of mobile systems. In: Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 87–101. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  44. Muller, P.: Space-Time as a Primitive for Space and Motion. In: FOIS, pp. 63–76. IOS Press, Amsterdam (1998), http://www.irit.fr/~Philippe.Muller

    Google Scholar 

  45. Ng, R.T., Subrahmanian, V.S.: Probabilistic logic programming. Information and Computation 101(2), 150–201 (1992), citeseer.csail.mit.edu/ng92probabilistic.html

    Article  MathSciNet  MATH  Google Scholar 

  46. Ni, J., Ravishankar, C.V., Bhanu, B.: Probabilistic spatial database operations. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750, pp. 140–159. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  47. Parisi, F., Parker, A., Grant, J., Subrahmanian, V.S.: Scaling cautious selection in spatial probabilistic temporal databases. In: Jeansoulin, R., Papini, O., Prade, H., Schockaert, S. (eds.) Methods for Handling Imperfect Spatial Information. STUDFUZZ, vol. 256, pp. 307–340. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  48. Parker, A., Infantes, G., Grant, J., Subrahmanian, V.: An agm-based belief revision mechanism for probabilistic spatio-temporal logics. In: AAAI (2008)

    Google Scholar 

  49. Parker, A., Infantes, G., Grant, J., Subrahmanian, V.S.: Spot databases: Efficient consistency checking and optimistic selection in probabilistic spatial databases. IEEE TKDE 21(1), 92–107 (2009)

    Google Scholar 

  50. Parker, A., Subrahmanian, V.S., Grant, J.: A logical formulation of probabilistic spatial databases. IEEE TKDE, 1541–1556 (2007)

    Google Scholar 

  51. Parker, A., Yaman, F., Nau, D., Subrahmanian, V.: Probabilistic go theories. In: IJCAI, pp. 501–506 (2007)

    Google Scholar 

  52. Pelanis, M., Saltenis, S., Jensen, C.S.: Indexing the past, present, and anticipated future positions of moving objects. ACM Trans. Database Syst. 31(1), 255–298 (2006)

    Article  Google Scholar 

  53. Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches to the indexing of moving object trajectories. In: Proceedings of VLDB (2000)

    Google Scholar 

  54. Pittarelli, M.: An algebra for probabilistic databases. IEEE TKDE 6(2), 293–303 (1994)

    Google Scholar 

  55. Rajagopalan, R., Kuipers, B.: Qualitative spatial reasoning about objects in motion: Application to physics problem solving. In: IJCAI 1994, San Antonio, TX, pp. 238–245 (1994)

    Google Scholar 

  56. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: International Conference on Knowledge Representation and Reasoning, KR 1992, pp. 165–176. Morgan Kaufmann (1992)

    Google Scholar 

  57. Ross, R., Subrahmanian, V.S., Grant, J.: Aggregate operators in probabilistic databases. Journal of the ACM 52(1), 54–101 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  58. Shanahan, M.: Default reasoning about spatial occupancy. Artif. Intell. 74(1), 147–163 (1995), http://dx.doi.org/10.1016/0004-37029400071-8

    Google Scholar 

  59. Snodgrass, R.: The temporal query language tquel. In: Proceedings of the 3rd ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, PODS 1984, pp. 204–213. ACM, New York (1984), http://doi.acm.org/10.1145/588011.588041

    Chapter  Google Scholar 

  60. Tao, Y., Cheng, R., Xiao, X., Ngai, W.K., Kao, B., Prabhakar, S.: Indexing multi-dimensional uncertain data with arbitrary probability density functions. In: VLDB, pp. 922–933 (2005)

    Google Scholar 

  61. Tao, Y., Papadias, D., Sun, J.: The TPR*-tree: an optimized spatio-temporal access method for predictive queries. In: Proceedings of the 29th International Conference on Very Large Data Bases, vol. 29, pp. 790–801. VLDB Endowment (2003)

    Google Scholar 

  62. Wolter, F., Zakharyaschev, M.: Spatial reasoning in rcc-8 with boolean region terms. In: Principles of Knowledge Representation and Reasoning, ECAI 2000, pp. 244–248. IOS Press, Berlin (2000)

    Google Scholar 

  63. Wolter, F., Zakharyaschev, M.: Spatio-temporal representation and reasoning based on RCC-8. In: Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) Principles of Knowledge Representation and Reasoning, KR 2000, pp. 3–14. Morgan Kaufmann, San Francisco (2000), citeseer.ist.psu.edu/wolter00spatiotemporal.html

    Google Scholar 

  64. Yang, B., Lu, H., Jensen, C.S.: Probabilistic threshold k nearest neighbor queries over moving objects in symbolic indoor space. In: Manolescu, I., Spaccapietra, S., Teubner, J., Kitsuregawa, M., Léger, A., Naumann, F., Ailamaki, A., Özcan, F. (eds.) EDBT. ACM International Conference Proceeding Series, vol. 426, pp. 335–346. ACM (2010)

    Google Scholar 

  65. Zhang, M., Chen, S., Jensen, C.S., Ooi, B.C., Zhang, Z.: Effectively indexing uncertain moving objects for predictive queries. PVLDB 2(1), 1198–1209 (2009)

    Google Scholar 

  66. Zheng, K., Trajcevski, G., Zhou, X., Scheuermann, P.: Probabilistic range queries for uncertain trajectories on road networks. In: Ailamaki, A., Amer-Yahia, S., Patel, J.M., Risch, T., Senellart, P., Stoyanovich, J. (eds.) EDBT, pp. 283–294. ACM (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grant, J., Parisi, F., Subrahmanian, V.S. (2013). Research in Probabilistic Spatiotemporal Databases: The SPOT Framework. In: Ma, Z., Yan, L. (eds) Advances in Probabilistic Databases for Uncertain Information Management. Studies in Fuzziness and Soft Computing, vol 304. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37509-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37509-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37508-8

  • Online ISBN: 978-3-642-37509-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics