Skip to main content

The Effects of Multivalency and Kinetics in Nanoscale Search by Molecular Spiders

  • Chapter
Evolution, Complexity and Artificial Life

Abstract

Molecular spiders are nanoscale walkers made with catalytic DNA legs attached to a rigid body. They move over a surface of DNA substrates, cleaving them and leaving behind product DNA strands, which they are able to revisit. The cleavage and detachment from substrates together take more time than the detachment from products. This difference in residence time between substrates and products, in conjunction with the plurality of the legs, makes a spider move differently from an ordinary random walker. The number of legs, and their lengths, can be varied, and this defines how a spider moves on the surface, i.e., its gait. Here we define an abstract model of molecular spiders in two dimensions. Then, using Kinetic Monte Carlo simulation, we study how efficiently the spiders with various gaits are able to find specific targets on a finite two-dimensional lattice. Multi-legged spiders with certain gaits find their targets faster than regular random walkers. The search performance of spiders depends both on their gait and on the kinetic rate r, which describes the relative substrate/product “stickiness.” Spiders with gaits that allow more freedom of leg movement find their targets faster than spiders with more restrictive gaits. For each gait, there is an optimal value of r that minimizes the time to find all target sites. Spiders influence each other’s motion through stigmergy, and this also affects the search performance.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-642-37577-4_18

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Elsewhere we study additional kinetic details using more elaborate and more computationally expensive models [8]. These models do permit useful characterization of mechanical motor properties, but they do not alter the basic walking behavior.

  2. 2.

    In the laboratory, an uncleavable, pure-DNA substrate has been used [2] for the purpose. In envisaged applications, the targets presented on the cell surface will not necessarily be DNA strands. To bind to non-DNA targets, in addition to the legs a spider may carry an “arm,” an aptamer molecule that specifically binds to the target.

References

  1. Pei, R., Taylor, S.K., Stefanovic, D., Rudchenko, S., Mitchell, T.E., Stojanovic, M.N.: Behavior of polycatalytic assemblies in a substrate-displaying matrix. J. Am. Chem. Soc. 128(39), 12693–12699 (2006)

    Article  Google Scholar 

  2. Lund, K., Manzo, A.J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010)

    Article  Google Scholar 

  3. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)

    Article  Google Scholar 

  4. Pinheiro, A.V., Han, D., Shih, W.M., Yan, H.: Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol. 6, 763–772 (2011)

    Article  Google Scholar 

  5. Antal, T., Krapivsky, P.L., Mallick, K.: Molecular spiders in one dimension. J. Stat. Mech. Theor. Exp. 2007(08), P08027 (2007)

    Article  MathSciNet  Google Scholar 

  6. Antal, T., Krapivsky, P.L.: Molecular spiders with memory. Phys. Rev. E 76(2), 021121 (2007)

    Article  Google Scholar 

  7. Semenov, O., Olah, M.J., Stefanovic, D.: Mechanism of diffusive transport in molecular spider models. Phys. Rev. E 83, 021117 (2011)

    Article  Google Scholar 

  8. Olah, M.J., Stefanovic, D.: Multivalent random walkers: a model for deoxyribozyme walkers. In: DNA 17: Proceedings of the Seventeenth International Meeting on DNA Computing and Molecular Programming. Lecture Notes in Computer Science, vol. 6397, pp. 160–174. Springer, Berlin (2011)

    Google Scholar 

  9. Kolomeisky, A.B., Fisher, M.E.: Molecular motors: a theorist’s perspective. Ann. Rev. Phys. Chem. 58, 675–695 (2007)

    Article  Google Scholar 

  10. Bier, M.: The energetics, chemistry, and mechanics of a processive motor protein. BioSystems 93, 23–28 (2008)

    Article  Google Scholar 

  11. Astumian, R.D.: Thermodynamics and kinetics of molecular motors. Biophys. J. 98, 2401–2409 (2010)

    Article  Google Scholar 

  12. Jamison, D.K., Driver, J.W., Rogers, A.R., Constantinou, P.E., Diehl, M.R.: Two kinesins transport cargo primarily via the action of one motor: implications for intracellular transport. Biophys. J. 99, 2967–2977 (2010)

    Article  Google Scholar 

  13. Lipowsky, R., Beeg, J., Dimova, R., Klumpp, S., Müller, M.K.I.: Cooperative behavior of molecular motors: cargo transport and traffic phenomena. Phys. E 42, 649–661 (2010)

    Article  Google Scholar 

  14. Driver, J.W., Jamison, D.K., Uppulury, K., Rogers, A.R., Kolomeisky, A.B., Diehl, M.R.: Productive cooperation among processive motors depends inversely on their mechanochemical efficiency. Biophys. J. 101, 386–395 (2011)

    Article  Google Scholar 

  15. Kay, E.R., Leigh, D.A., Zerbetto, F.: Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Edit. 46, 72–191 (2007)

    Article  Google Scholar 

  16. Hugel, T., Lumme, C.: Bio-inspired novel design principles for artificial molecular motors. Curr. Opin. Biotech. 21(5), 683–689 (2010)

    Article  Google Scholar 

  17. Yurke, B., Turberfield, A.J., Mills, A.P., Jr., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)

    Article  Google Scholar 

  18. Shirai, Y., Osgood, A.J., Zhao, Y., Kelly, K.F., Tour, J.M.: Directional control in thermally driven single-molecule nanocars. Nano Lett. 5(11), 2330–2334 (2005)

    Article  Google Scholar 

  19. Tian, Y., He, Y., Chen, Y., Yin, P., Mao, C.: A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew. Chem. Int. Edit. 44, 4355–4358 (2005)

    Article  Google Scholar 

  20. Venkataraman, S., Dirks, R.M., Rothemund, P.W.K., Winfree, E., Pierce, N.A.: An autonomous polymerization motor powered by DNA hybridization. Nature Nanotechnology 2, 490–494 (2007)

    Article  Google Scholar 

  21. Green, S.J. Bath, J., Turberfield, A.J.: Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. Phys. Rev. Lett. 101, 238101 (2008)

    Article  Google Scholar 

  22. Omabegho, T., Sha, R., Seeman, N.C.: A bipedal DNA brownian motor with coordinated legs. Science 324, 67–71 (2009)

    Article  Google Scholar 

  23. Bath, J., Green, S.J., Allen, K.E., Turberfield, A.J.: Mechanism for a directional, processive, and reversible DNA motor. Small 5(13), 1513–1516 (2009)

    Article  Google Scholar 

  24. Gu, H., Chao, J., Xiao, S.-J., Seeman, N.C.: A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–206 (2010)

    Article  Google Scholar 

  25. Santoro, S.W., Joyce, G.F.: A general purpose RNA-cleaving DNA enzyme. P. Natl. Acad. Sci. USA 94, 4262–4266 (1997)

    Article  Google Scholar 

  26. Samii, L., Linke, H., Zuckermann, M.J., Forde, N.R.: Biased motion and molecular motor properties of bipedal spiders. Phys. Rev. E 81, 021106 (2010)

    Article  Google Scholar 

  27. Semenov, O., Olah, M.J., Stefanovic, D.: Multiple molecular spiders with a single localized source: the one-dimensional case. In DNA 17: Proceedings of the Seventeenth International Meeting on DNA Computing and Molecular Programming. Lecture Notes in Computer Science, vol. 6397, pp. 204–216. Springer, Berlin (2011)

    Google Scholar 

  28. Samii, L., Blab, G.A., Bromley, E.H.C., Linke, H., Curmi, P.M.G., Zuckermann, M.J., Forde, N.R.: Time-dependent motor properties of multipedal molecular spiders. Phys. Rev. E 84, 031111 (2011)

    Article  Google Scholar 

  29. Bortz, A.B., Kalos, M.H., Lebowitz, J.L.: A new algorithm for Monte Carlo simulation of Ising spin systems. J. Comput. Phys. 17(1), 10–18 (1975)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Paul L. Krapivsky and Mark J. Olah for many discussions of spider behaviors. A preliminary version of this work was presented at WIVACE 2012; we thank the conference reviewers for their incisive and detailed comments. This material is based upon work supported by the National Science Foundation under grants 0829896 and 1028238.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darko Stefanovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Semenov, O., Stefanovic, D., Stojanovic, M.N. (2014). The Effects of Multivalency and Kinetics in Nanoscale Search by Molecular Spiders. In: Cagnoni, S., Mirolli, M., Villani, M. (eds) Evolution, Complexity and Artificial Life. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37577-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37577-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37576-7

  • Online ISBN: 978-3-642-37577-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics