Skip to main content

Using Hidden Markov Model and Dempster-Shafer Theory for Evaluating and Detecting Dangerous Situations in Level Crossing Environments

  • Conference paper
Advances in Artificial Intelligence (MICAI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7629))

Included in the following conference series:

Abstract

In this paper we present a video surveillance system for evaluating and detecting dangerous situations in level crossing environments. The system is composed of the following main parts: a robust algorithm able to detect and separate moving objects in the perceived environment, a Gaussian propagation model based dense optical flow for objects tracking, a Hidden Markov Model to recognize trajectories of detected objects, and an uncertainty model using theory of evidence to calculate the level of danger allowing to detect dangerous situations in level crossings. This method is tested on real image sequences, and the results are discussed. This work is developed within the framework of PANsafer project, supported by the ANR VTT program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Panahi, S., Sheikhi, S., Hadadan, S., Gheissari, N.: Evaluation of Background Subtraction Methods. In: Computing: Techniques and Applications, DICTA 2008, pp. 357–364. Digital Image (2008)

    Google Scholar 

  2. Fakhfakh, N., Khoudour, L., El-Koursi, E.M., Bruyelle, J.L., Dufaux, A., Jacot, J.: Background Subtraction and 3D Localization of Moving and Stationary Obstacles at Level Crossings. In: International Conference on Image Processing Theory, Tools and Applications, Paris (2010)

    Google Scholar 

  3. Bertozzi, M., Broggi, A., Rose, M., Felisa, M.: A Pedestrian Detector Using Histograms of Oriented Gradients and a Support Vector Machine Classifier. In: Intelligent Transportation Systems Conference (2007)

    Google Scholar 

  4. Toreyin, B.U., Cetin, A.E., Aksay, A., Akhan, M.B.: Moving object detection in wavelet compressed video. In: Signal Processing: Image Communication, pp. 255–264 (2005)

    Google Scholar 

  5. Suzuki, K., Isao, H., Noboru: Linear-time Connected-component Labeling based on Sequential Local Operations. J. of Computer Vision and Image Understanding 89, 1–23 (2003)

    Article  MATH  Google Scholar 

  6. Kirubarajan, T., Bar-Shalom, Y.: Data Association Combined with the Probability Hypothesis Density Filter for Multitarget Tracking. In: Proceedings of SPIE Signal and Data Processing of Small Targets, p. 52 (2004)

    Google Scholar 

  7. Francois, A.R.J.: Real-Time Multi-Resolution Blob Tracking. In: IRIS Technical Report IRIS-04-422. University of Southern California, Los Angeles (2004)

    Google Scholar 

  8. Li, X., Zhang, T., Shen, S., Jiancheng, S.: Object tracking using an adaptive Kalman filter combined with mean shift. In: Optical Engineering. SPIE (2010)

    Google Scholar 

  9. Blake, A., Isard, M.: Active Contours. Springer (1998)

    Google Scholar 

  10. Yang, C., Duraiswami, R., Davis, L.: Fast multiple object tracking via a hierarchical particle filter. In: International Conference on Computer vision (2005)

    Google Scholar 

  11. Bashir, F., Khokhar, A., Schonfeld, D.: Automatic Object Trajectory-Based Motion Recognition using Gaussian Mixture Models. In: IEEE International Conference on Multimedia and Expo., Amsterdam (2006)

    Google Scholar 

  12. Bashir, F., Khokhar, A., Schonfeld, D.: Object Trajectory-Based Activity Classification and Recognition Using Hidden Markov Models. In: IEEE Transactions on Image Processing, pp. 1912–1919 (2007)

    Google Scholar 

  13. Nguyen, N.T., Phung, D.Q., Venkatesh, D., Bui, H.: Learning and Detecting Activities from Movement Trajectories Using the Hierarchical Hidden Markov Model. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, CVPR (2005)

    Google Scholar 

  14. Natarajan, P., Nevatia, R.: Coupled Hidden Semi Markov Models for Activity Recognition. In: Proceedings of IEEE Workshop on Motion and Video Computing (2007)

    Google Scholar 

  15. Yager, R.R., Fedrizzif, M., Kacprzyk, J.: Advances in the Dempster-Shafer Theory of Evidence. John Wiley and Sons (1994)

    Google Scholar 

  16. Dubois, D.: Possibility theory and statistical reasoning. In: Computational Statistics & Data Analysis, pp. 47–69 (2006)

    Google Scholar 

  17. Salmane, H., Ruichek, Y., Khoudour, L.: Gaussian propagation model based dense optical flow for objects tracking. In: International Conference on Image Analysis and Recognition, ICIAR (2012)

    Google Scholar 

  18. Salmane, H., Ruichek, Y., Khoudour, L.: Object tracking using Harris corner points based optical flow propagation and Kalman filter. In: IEEE Intelligent Transportation Systems Conference, ITSC (2011)

    Google Scholar 

  19. Cheng, Y.: Mean Shift, Mode Seeking, and Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence (1995)

    Google Scholar 

  20. Derpanis, K.G.: The Harris Corner Detector (2004), http://www.cse.yorku.ca/kosta/CompVis_Notes/harris_detector.pdf

  21. Tamgade, S.N., Bora, V.R.: Motion Vector Estimation of Video Image by Pyramidal Implementation of Lucas Kanade Optical Flow. In: Second International Conference on Emerging Trends in Engineering & Technology (2009)

    Google Scholar 

  22. Baum, L.E., Sell, G.R.: Growth functions for transformations on manifolds. Pac. J. Math. Stat. 41, 211–227 (1968)

    Article  MathSciNet  Google Scholar 

  23. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory, 260–269 (1967)

    Google Scholar 

  24. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Math. Statist. 41, 164–171 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lawrence, R.R.: A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salmane, H., Ruichek, Y., Khoudour, L. (2013). Using Hidden Markov Model and Dempster-Shafer Theory for Evaluating and Detecting Dangerous Situations in Level Crossing Environments. In: Batyrshin, I., González Mendoza, M. (eds) Advances in Artificial Intelligence. MICAI 2012. Lecture Notes in Computer Science(), vol 7629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37807-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37807-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37806-5

  • Online ISBN: 978-3-642-37807-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics