Skip to main content

Salient Features Selection for Multiclass Texture Classification

  • Conference paper
Advances in Artificial Intelligence (MICAI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7629))

Included in the following conference series:

Abstract

Texture classification is one of the important components in texture analysis which has drawn the attention of research community during the past few decades. Various texture feature extraction techniques have been proposed in the literature. However, combining texture methods from different families has demonstrated to produce better classification at the cost of complexity of the learning model. In this paper, we have investigated three parametric test statistics (ANOVA F statistic, Welch test statistic, Adjusted Welch test statistic) to determine salient features for multiclass texture classification. The salient features are obtained from a pool of features obtained using five textural feature extraction methods. Experiments are performed on a widely used publicly available Brodatz dataset. Experimental results show that the classification error decreases significantly with the use of all the three feature selection methods with all classifiers. The reduced set of features will also lead to significant decrease in computation time of the learning model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Li, W.-C., Tsai, D.-M.: Wavelet-based defect detection in solar wafer images with inhomogeneous texture. Pattern Recognition 45(2), 742–756 (2012)

    Google Scholar 

  2. Oliveira, M., Fernandes, P., Avelar, W., Santos, S., Castellano, G., Li, L.: Texture analysis of computed tomography images of acute ischemic stroke patients. Clinical Radiology 42(11), 1076–1079 (2009), doi:10.1590/S0100-879X2009005000034

    Google Scholar 

  3. Backes, A.R., de M. Sá Junior, J.J., Kolb, R.M., Bruno, O.M.: Plant Species Identification Using Multi-scale Fractal Dimension Applied to Images of Adaxial Surface Epidermis. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 680–688. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Jain, A.K., Bhattacharjee, S.K.: Address block location on envelopes using Gabor filters. Pattern Recognition 25(12), 1459–1477 (1992)

    Article  Google Scholar 

  5. Yang, C.Z.X.: Study of remote sensing image texture analysis and classification using wavelet. International Journal of Remote Sensing 19(16), 3197–3203 (1998)

    Article  Google Scholar 

  6. Heidelbach, F., Kunze, K., Wenk, H.R.: Texture analysis of a recrystallized quartzite using electron diffraction in the scanning electron microscope. Journal of Structural Geology, 91–104 (2000)

    Google Scholar 

  7. Haralick, R.M.: Statistical and structural approaches to texture. Proceedings of the IEEE 67(5), 786–804 (1979)

    Article  Google Scholar 

  8. Azencott, R., Wang, J.-P., Younes, L.: Texture classification using windowed fourier filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(2), 148–153 (1997)

    Article  Google Scholar 

  9. Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recognition 24(12), 1167–1186 (1991)

    Article  Google Scholar 

  10. Idrissa, M., Acheroy, M.: Texture classification using gabor filters. Pattern Recognition Letters 23(9), 1095–1102 (2002)

    Article  MATH  Google Scholar 

  11. Chang, T., Kuo, C.-C.: Texture analysis and classification with tree-structure wavelet transform. IEEE Transactions on Image Processing 2(4), 429–441 (1993)

    Article  Google Scholar 

  12. Randen, T., Husøy, J.H.: Filtering for texture classification: a comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(4), 291–310 (1999), doi:10.1109/34.761261

    Article  Google Scholar 

  13. Backes, A.R., Bruno, O.M.: A New Approach to Estimate Fractal Dimension of Texture Images. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008 2008. LNCS, vol. 5099, pp. 136–143. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Tricot, C.: Curves and Fractal Dimension. Springer, Heidelberg (1995)

    Book  MATH  Google Scholar 

  15. Puig, D., García, M.A.: Pixel classification through divergence-based integration of texture methods with conflict resolution. In: IEEE ICIP, Barcelona, Spain (2003)

    Google Scholar 

  16. John, G.H., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem. In: Proceedings of the 11th International Conference on Machine Learning, New Brunswick, NJ, USA, pp. 121–129 (1994)

    Google Scholar 

  17. Neter, J., Kutner, M.H., Nachtsheim, C.J., et al.: Applied Linear Statistical Models, 4th edn. McGraw-Hill, Chicago (1996)

    Google Scholar 

  18. Welch, B.L.: On the comparison of several mean values: An alternative approach. Biometrika 38, 330–336 (1951)

    MathSciNet  MATH  Google Scholar 

  19. Hartung, J., Argac, D., Makambi, K.H.: Small sample properties of tests on homogeneity in oneway ANOVA and meta-analysis. Statist. Papers 43, 197–235 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gonzalez, R., Woods, R.: Image Enhancement in the Frequency Domain. In: Digital Image Processing, 2nd edn., pp. 349–408. Pearson Education (2004)

    Google Scholar 

  21. Mallat, S.G.: A theory of multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(7), 674–693 (1980)

    Article  Google Scholar 

  22. Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.): The Handbook of Pattern Recognition and Computer Vision, 2nd edn., pp. 207–248. World Scientific Publishing Co. (1998)

    Google Scholar 

  23. Lehman, E.L.: Testing Statistical Hypotheses, 2nd edn. Wiley, NY (1986)

    Book  Google Scholar 

  24. Brodatz, P.: Textures A Photographic Album for Artists and Designer. Dover, New York (1996)

    Google Scholar 

  25. Duin, R., Juszcak, P., Paclik, P., Pekalska, E., De Ridder, D., Tax, D.: Prtools, a matlab toolbox for pattern recognition, http://www.prtools.org (accessed 2004)

  26. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 1–27 (2011), Software http://www.csie.ntu.edu.tw/~cjlin/libsvm

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rana, B., Agrawal, R.K. (2013). Salient Features Selection for Multiclass Texture Classification. In: Batyrshin, I., González Mendoza, M. (eds) Advances in Artificial Intelligence. MICAI 2012. Lecture Notes in Computer Science(), vol 7629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37807-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37807-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37806-5

  • Online ISBN: 978-3-642-37807-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics