Skip to main content

Automatic 3D City Reconstruction Platform Using a LIDAR and DGPS

  • Conference paper
Advances in Artificial Intelligence (MICAI 2012)

Abstract

In this work an approach for geo-referenced 3D reconstruction of outdoor scenes using LIDAR (Light Detection And Ranging) and DGPS (Diferencial Global Positioning System) technologies is presented. We develop a computationally efficient method for 3D reconstruction of city-sized environments using both sensors providing an excellent base point for high-detail street views. In the proposed method, the translation between consecutive local maps is obtained using DGPS data and the rotation is obtained extracting correspondant planes of two point clouds and matching them, after extracting these parameters we merge many local scenes to obtain a global map. We validate the accuracy of the proposed method making a comparison between the reconstruction and real measures and plans of the scanned scene. The results show that the proposed system is a useful solution for 3D reconstruction of large scale city models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amoureus, L., Bomers, M.P.H., Fuser, R., Tosatto, M.: Integration of lidar and terrestrial mobile mapping technology for the creation of a comprehensive road cadastre. In: The 5th International Symposium on Mobile Mapping Technology, pp. 29–31 (2007)

    Google Scholar 

  2. Böhm, J., Haala, N.: Efficient integration of aerial and terrestrial laser data for virtual city modeling uusing lasermaps. Proceedings of the ISPRS Workshop, Laser scanning (2007)

    Google Scholar 

  3. Bok, Y., Hwang, Y., Kweon, I.S.: Accurate motion estimation and high-precision 3d reconstruction by sensor fusion. In: Optimization, pp. 4721–4726 (April 2007)

    Google Scholar 

  4. Chen, L.C., Teo, T.A., Rau, J.Y., Liu, J.K., Hsu, W.C.: Building reconstruction from lidar data and aerial imagery. In: International Geoscience and Remote Sensing Symposium, vol. 4, pp. 2846–2849. IEEE (2005)

    Google Scholar 

  5. Coticchia, A., Surace, L.: La trasformazione delle cordinate dal sistema UTM. Laboratorio di Topografia e Fotogrammetria (1984)

    Google Scholar 

  6. Cristian, F.: Probabilistic clock synchronization. Distributed Computing, 146–158 (1989)

    Google Scholar 

  7. de Jesus Rico-Jiménez, J.: Construcción de mapas 3d a partir de la extracción de primitivas geométricas obtenidas de datos de un lidar. Tesis de Maestría (2009)

    Google Scholar 

  8. González-Barbosa, J.-J., Atanacio-Jiménez, G., et al.: Lidar velodyne hdl-64e calibration using pattern planes. International Journal of Advanced Robotics Systems (2011)

    Google Scholar 

  9. Grinstead, B., Koschan, D.: Vehicle-borne scanning for detailed 3d terrain model generation. In: SAE Commercial Vehicle Engineering Congress (2005)

    Google Scholar 

  10. Haala, N., Peter, M.: Mobile lidar mapping for 3d point cloud collection in urban areas - a performance test. In: 21 ISPRS Congress (2008)

    Google Scholar 

  11. Hartley, R., Zisserman: Multiple view geometry in computer vision. Cambridge University Press (2000)

    Google Scholar 

  12. Kremer, J., Hunter, G.: Performance of the streetmapper mobile lidar mapping system in ”real world” projects. Photogrammetric Week (2007)

    Google Scholar 

  13. Leal, E., Leal, N.: Point cloud denoising using robust principal component analysis. In: International Conference on Computer Graphics Theory and Applications, pp. 51–58 (2006)

    Google Scholar 

  14. Lindenberger, J.: Laser-Profilmessung zur topographischen Geländeaufnahme. PhD thesis, Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften (1993)

    Google Scholar 

  15. Mettenleiter, M., Obertreiber, N., Härtl, F., Ehm, M., Baur, J., Fröhlich, C.: 3d laser scanner as part of kinematic measurement systems. In: 1st International Conference on Machine Control and Guidance, pp. 24–26 (2008)

    Google Scholar 

  16. Mitra, N.J., Nguyen, A., Guibas, L.: Estimating surface normals in noisy point cloud data. Special Issue of International Journal of Computational Geometry and Applications 14, 261–276 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Snyder, P.: Usgs no. 1532. Map Projections used by the United States Geological Survey

    Google Scholar 

  18. Sprickerhof, J., Lingemann, K., Hertzberg, J.: A heuristic loop closing technique for large-scale 6d slam. Automatika, 199–222 (2011)

    Google Scholar 

  19. Talaya, J., Bosch, E.: Geomòbil: the mobile mapping system from the icc. In: 4th International Symposium on Mobile Mapping Technology (2004)

    Google Scholar 

  20. Verma, V., Kumar, R., Hsu, S.: 3d building detection and modeling from aerial lidar data. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2213–2220. IEEE (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

García-Moreno, AI., Gonzalez-Barbosa, JJ., Ornelas-Rodríguez, FJ., Hurtado-Ramos, JB., Ramirez-Pedraza, A., González-Barbosa, EA. (2013). Automatic 3D City Reconstruction Platform Using a LIDAR and DGPS. In: Batyrshin, I., González Mendoza, M. (eds) Advances in Artificial Intelligence. MICAI 2012. Lecture Notes in Computer Science(), vol 7629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37807-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37807-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37806-5

  • Online ISBN: 978-3-642-37807-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics