Abstract
Pose classification is one of the important steps in some pose invariant face recognition methods. In this paper, we propose to use: (i) Partial least square (PLS) and (ii) Linear regression for facial pose classification. The performance of these two approaches is compared with two edge based approaches and pose-eigenspace approach in terms of classification accuracy. Experimental results on two publicly available face databases (PIE and FERET) show that the regression based approach outperforms other approaches for both the databases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey. ACM Comput. Surv. 35(4), 399–459 (2003)
Chen, S., Tan, X., Zhou, Z.H., Zhang, F.: Face recognition from a single image per person: a survey. Pattern Recognition 39(9), 1725–1745 (2006)
Sharma, A., Dubey, A., Tripathi, P., Kumar, V.: Pose invariant virtual classifiers from single training image using novel hybrid-eigenfaces. Neurocomputing 73, 1868–1880 (2010)
Li, A., Shan, S., Chen, X., Gao, W.: Cross-pose face recognition based on partial least squares. Pattern Recognition Letters 32(15), 1948–1955 (2011)
Chai, X., Shan, S., Chen, X., Gao, W.: Locally linear regression for pose-invariant face recognition. IEEE Trans. Image Process. 16(7), 1716–1725 (2007)
Choi, S., Choi, C., Kwak, N.: Face recognition based on 2D images under illumination and pose variations. PR Letters 32(4), 561–571 (2011)
Chutorian, E.M., Trivedi, M.M.: Head Pose Estimation in Computer Vision: A Survey. IEEE Trans. on PAMI 31(4), 607–626 (2009)
Srinivasan, S., Boyer, K.: Head pose estimation using view based eigenspaces. In: Proc. Int’l. Conf. Pattern Recognition, pp. 302–305 (2002)
Jaiswal, A., Kumar, N., Agrawal, R.K.: Illumination Invariant Facial Pose Classification. International Journal of Computer Application 37(1), 14–19 (2012)
Niyogi, S., Freeman, W.: Example-based head tracking. In: Proc. Int’l. Conf. Automatic Face and Gesture Recognition, pp. 374–378 (1996)
Beymer, D.: Face recognition under varying pose. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 756–761 (1994)
Huang, J., Shao, X., Wechsler, H.: Face pose discrimination using support vector machines (SVM). In: Proc. Int’l. Conf. Pattern Recognition, pp. 154–156 (1998)
Jones, M., Viola, P.: Fast multi-view face detection. Mitsubishi Electric Research Laboratories. Tech. Rep. 096 (2003)
Li, Y., Gong, S., Sherrah, J., Liddell, H.: Support vector machine based multi-view face detection and recognition. Image and Vision Computing 22(5), 413–427 (2004)
Seemann, E., Nickel, K., Stiefelhagen, R.: Head pose estimation using stereo vision for human-robot interaction. In: Proc. IEEE Int’l. Conf. Automatic Face and Gesture Recognition, pp. 626–631 (2004)
McKenna, S., Gong, S.: Real-time face pose estimation. Real-Time Imaging 4(5), 333–347 (1998)
Li, S., Fu, Q., Gu, L., Scholkopf, B., Cheng, Y., Zhang, H.: Kernel machine based learning for multi-view face detection and pose estimation. In: Proc. IEEE Int’l. Conf. Computer Vision, pp. 674–679 (2001)
Duda, R., Hart, P., Stork, D.: Pattern classification, 2nd edn. John wiley & sons, Inc. (2001)
Chen, I., Zhang, L., Hu, Y., Li, M., Zhang, H.: Head pose estimation using Fisher Manifold learning. In: Proc. IEEE Int’l. Workshop Analysis and Modeling of Faces and Gestures, pp. 203–207 (2003)
Raytchev, B., Yoda, I., Sakaue, K.: Head pose estimation by nonlinear manifold learning. In: Proc. Int’l. Conf. Pattern Recognition, pp. 462–466 (2004)
Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)
Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)
Balasubramanian, V., Ye, J., Panchanathan, S.: Biased manifold embedding: A framework for person-independent head pose estimation. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (2007)
Krüger, V., Pötzsch, M., von der Malsburg, C.: Determination of face position and pose with a learned representation based on labeled graphs. Image and Vision Computing 15(8), 665–673 (1997)
Lanitis, A., Taylor, C., Cootes, T.: Automatic interpretation of human faces and hand gestures using flexible models. In: Proc. IEEE Int’l. Conf. Automatic Face and Gesture Recognition, pp. 98–103 (1995)
Cootes, T., Walker, K., Taylor, C.: View based active appearance model. In: Proc. Int’l. Conf. Automatic Face and Gesture Recognition, pp. 227–232 (2000)
Gee, A., Cipolla, R.: Determining the gaze of faces in images. Image and Vision Computing 12(10), 639–647 (1994)
Horprasert, T., Yacoob, Y., Davis, L.: Computing 3-d head orientation from a monocular image sequence. In: Proc. Int’l. Conf. Automatic Face and Gesture Recognition, pp. 242–247 (1996)
Yao, P., Evans, G., Calway, A.: Using affine correspondence to estimate 3-d facial pose. In: Proc. Int’l. Conf. Image Processing, pp. 919–922 (2001)
Schödl, A., Haro, A., Essa, I.: Gaze tracking using a textured polygonal model. In: Proc. Workshop Perceptual User Interfaces (1998)
Jebara, T., Pentland, A.: Parametrized structure from motion for 3d adaptive feedback tracking of faces. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 144–150 (1997)
Jiang, X., Mandal, B., Kot, A.: Eigenfeature Regularization and Extraction in Face Recognition. IEEE Trans. on PAMI 30(3), 383–394 (2008)
Rosipal, R., Kramer, N.: Overview and recent advances in partial least squares. Subspace Latent Struct. Feat. Select., 34–51 (2006)
Baek, J., Kim, M.: Face recognition using partial least squares components. Pattern Recognit. 37(6), 1303–1306 (2004)
Naseem, I., Togneri, R., Bennamoun, M.: Linear Regression for Face Recognition. IEEE Trans. PAMI 32(11), 2106–2112 (2010)
Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression database. IEEE Trans.PAMI 25(12), 1615–1618 (2003)
Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face recognition algorithms. Image Vision Comput. 16(5), 295–306 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jaiswal, A., Kumar, N., Agrawal, R.K. (2013). Statistical Framework for Facial Pose Classification. In: Batyrshin, I., González Mendoza, M. (eds) Advances in Artificial Intelligence. MICAI 2012. Lecture Notes in Computer Science(), vol 7629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37807-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-37807-2_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37806-5
Online ISBN: 978-3-642-37807-2
eBook Packages: Computer ScienceComputer Science (R0)