Skip to main content

Signal Separation with A Priori Knowledge Using Sparse Representation

  • Chapter
Advances in Heuristic Signal Processing and Applications
  • 2039 Accesses

Abstract

This chapter presents a sparse representation method for single-channel signal separation with a priori knowledge. In this method, it is assumed that different source signals can be represented with different subsets of a dictionary constructed based on some a priori knowledge about these sources. Then, by estimating the sparse representation of the observed signal over this dictionary, we can finally recover the source signals. The two keys of this method are dictionary constructions and pursuit algorithms for finding sparse representations. An overview of commonly used schemes or algorithms for the two keys is given. In our work, this method is used to separate MRS data in order to achieve accurate MRS quantitation. Simulation results show the good performance of this method in separating the overlapping resonances and baseline. Quantitations of in vivo 1H MRS data of human brain tissues and prostate tissues demonstrate the effectiveness of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  2. Bouchikhi, A., Boudraa, A.: Multicomponent AM–FM signals analysis based on EMD–B-splines ESA. Signal Process. (2012)

    Google Scholar 

  3. Chen, S., Billings, S., Luo, W.: Orthogonal least squares methods and their application to non-linear system identification. Int. J. Control 50(5), 1873–1896 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM Rev., 129–159 (2001)

    Google Scholar 

  5. Cho, N., Kuo, C.: Sparse music representation with source-specific dictionaries and its application to signal separation. IEEE Trans. Audio Speech Lang. Process. 19(2), 326–337 (2011)

    Article  Google Scholar 

  6. Davies, M., James, C.: Source separation using single channel ICA. Signal Process. 87(8), 1819–1832 (2007)

    Article  MATH  Google Scholar 

  7. Davis, G., Mallat, S., Avellaneda, M.: Adaptive greedy approximations. Constr. Approx. 13(1), 57–98 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Donoho, D., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47(7), 2845–2862 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gao, B., Woo, W., Dlay, S.: Single channel source separation using EMD-subband variable regularized sparse features. IEEE Trans. Audio Speech Lang. Process. 99, 1 (2011)

    Google Scholar 

  10. Gillies, P., Marshall, I., Asplund, M., Winkler, P., Higinbotham, J.: Quantification of mrs data in the frequency domain using a wavelet filter, an approximated Voigt lineshape model and prior knowledge. NMR Biomed. 19(5), 617–626 (2006)

    Article  Google Scholar 

  11. Gorodnitsky, I., Rao, B.: Sparse signal reconstruction from limited data using focuss: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (1997)

    Article  Google Scholar 

  12. Guo, Y., Ruan, S., Landre, J., Constans, J.: A sparse representation method for magnetic resonance spectroscopy quantification. IEEE Trans. Biomed. Eng. 57(7), 1620–1627 (2010)

    Article  Google Scholar 

  13. Hopgood, J., Rayner, P.: Single channel nonstationary stochastic signal separation using linear time-varying filters. IEEE Trans. Signal Process. 51(7), 1739–1752 (2003)

    Article  Google Scholar 

  14. Huggins, P., Zucker, S.: Greedy basis pursuit. IEEE Trans. Signal Process. 55(7), 3760–3772 (2007)

    Article  MathSciNet  Google Scholar 

  15. Hyvarinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)

    Article  Google Scholar 

  16. Mallat, S., Zhang, Z.: Matching pursuits with time–frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  17. Radfar, M., Dansereau, R.: Single-channel speech separation using soft mask filtering. IEEE Trans. Audio Speech Lang. Process. 15(8), 2299–2310 (2007)

    Article  Google Scholar 

  18. Rao, B., Engan, K., Cotter, S., Palmer, J., Kreutz-Delgado, K.: Subset selection in noise based on diversity measure minimization. IEEE Trans. Signal Process. 51(3), 760–770 (2003)

    Article  Google Scholar 

  19. Saruwatari, H., Kawamura, T., Nishikawa, T., Lee, A., Shikano, K.: Blind source separation based on a fast-convergence algorithm combining ICA and beamforming. IEEE Trans. Audio Speech Lang. Process. 14(2), 666–678 (2006)

    Article  Google Scholar 

  20. Scheenen, T., Heijmink, S., Roell, S., Hulsbergen-Van de Kaa, C., Knipscheer, B., Witjes, J., Barentsz, J., Heerschap, A.: Three-dimensional proton MR spectroscopy of human prostate at 3 T without endorectal coil: Feasibility1. Radiology 245(2), 507–516 (2007)

    Article  Google Scholar 

  21. Starck, J., Elad, M., Donoho, D.: Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans. Image Process. 14(10), 1570–1582 (2005)

    Article  MathSciNet  Google Scholar 

  22. Tropp, J.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004)

    Article  MathSciNet  Google Scholar 

  23. Vanhamme, L., van den Boogaart, A., Van Huffel, S.: Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J. Magn. Reson. 129(1), 35–43 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guo, Y., Ruan, S. (2013). Signal Separation with A Priori Knowledge Using Sparse Representation. In: Chatterjee, A., Nobahari, H., Siarry, P. (eds) Advances in Heuristic Signal Processing and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37880-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37880-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37879-9

  • Online ISBN: 978-3-642-37880-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics