Abstract
This chapter presents a state-of-the-art on image and feature matching in 2D and 3D. Only methods suitable for embedded or wearable real-time system implementation are considered. The implementation may be supported by a dedicated VLSI system. Heuristic guided predictive approaches to image matching are classified as area-based or feature-based. Correlation-based matching, Fourier matching, and mutual information approaches are area-based. Graph, series, and their combinations, including pyramidal or multiresolution algorithms, are feature-based. First, relaxation, maximal clique, tree search, region growing, and dynamic programming methods are briefly described. Next, the correlation-based methods, with a fixed size or adaptive sized window, pyramidal methods, the iterative closest point (ICP) algorithm, and probability (saliency)-based approaches are sketched. Some hardware architectures which support these methods offer new computational models for image matching and image processing. Methods for feature tracking are split into two classes: correlation-based methods and Bayesian methods. Kanade–Lucas–Tomassini (KLT), three-steps/new-three-steps, four-steps, diamond efficient search, and some of their new extensions with inertial data represent the first class, while Kalman and other filters, and their recent improvements represent the second class. The importance of matching is attested by the wide number of applications which include robot navigation, navigation assistance for impaired people, navigation in virtual systems, the processing of medical, satellite and urban imagery, human computer interaction, stereo vision, 3D reconstruction, multimodal fusion. processing, remote sensing, etc.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ackermann, F.: Digital image correlation: performance and potential application in photogrammetry. Photogramm. Rec. 64(11), 429–439 (1984)
Alvarez, L., Gomez, L., Sendra, J.R.: Algebraic lens distortion model estimation. Image Process. On Line (2010)
Ambler, A.P., Barrow, H.G., Brown, C.M., Burstall, R.M., Popplestone, R.J.: A versatile computer controlled assembly system. In: IJCAI, pp. 298–307 (1973)
Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filter for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)
Asada, H., Brady, M.: The curvature primal sketch. IEEE Trans. Pattern Anal. Mach. Intell. 8(1), 2–14 (1986)
Baker, H.H., Binford, T.O.: Depth from edge- and intensity-based stereo. In: Proc. of JCAI, pp. 631–636 (1981)
Becker, F., Wieneke, B., Yuan, J., Schnorr, Ch.: Variational approach to adaptive correlation for motion estimation in particle image velocimetry. In: Rigoll, G. (ed.) Pattern Recognition. LNCS, vol. 5096, pp. 335–344 (2008)
Bellman, R.: The theory of dynamic programming. Bull. Am. Math. Soc. 60, 503–516 (1954)
Besl, P., McKay, N.: A method for registration of 3D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)
Bigot, J., Gamboa, F., Vimond, M.: Estimation of translation, rotation, and scaling between noisy images using the Fourier–Mellin transform. SIAM J. Imaging Sci. 2(2), 614–645 (2009)
Bouaziz, S., Pissaloux, E., Merigot, A., Devos, F.: Some hardware and software considerations for the multi-SIMD control strategy of massively parallel machines. In: Proc. of IEEE CompEuro 91 Conf., pp. 180–184 (1991)
Boykov: Fast approximate energy minimization via graph cuts. In: ICCV, pp. 377–384 (1999)
Broida, T.J., Chellapa, R.: Estimation of object motion parameters from a sequence of noisy images. IEEE Trans. Pattern Anal. Mach. Intell. 8(1), 90–99 (1986)
Brown, D.C.: Decentering distortion of lenses. Photogramm. Eng. 7, 444–462 (1966)
Brown, L.G.: A survey of image registration techniques. ACM Comput. Surv. 24, 326–376 (1992)
Bunke, H.: Recent developments in graph matching. In: IEEE ICPR (2000)
Burt, P., Adelson, E.: The Laplacian pyramid as a compact image code. In: IEEE COM-31, pp. 532–540 (1983)
Chen, R., Liu, J.S.: Mixture Kalman filters. J. R. Stat. Soc. B 62(3), 493–508 (2000)
Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In: Proc. IEEE Conf. on Robotics and Automation (1991)
Christmas, W., Killter, J., Petrou, M.: Structural matching in computer vision using probabilistic relaxation. IEEE Trans. Pattern Anal. Mach. Intell. 8, 749–764 (1995)
Cole-Rhodes, A., Johnson, K., Le Moigne, J.: Multiresolution registration of remote-sensing images using stochastic gradient. In: Aerosense (2002)
Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. J. Pattern Recognit. Artif. Intell. 18(3), 265–298 (2004)
Corke, P.: An inertial and visual sensing system for a small autonomous helicopter. J. Robot. Syst. 21(2), 43–51 (2004)
Cormen, T.H., Leiserson, C.H., Rivest, R.L., Cliford, C.: Introduction to Algorithms, pp. 540–549. MIT Press and McGraw-Hill, Cambridge (2001)
Davis, L.: A survey of edge detection technique. Comput. Graph. Image Process. 4(3), 248–270 (1975)
Davison, A.J., Molton, N.D.: MonoSlam: real-time monocamera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)
De Castro, E.D., Morandi, C.: Registration of translated and rotated images using finite Fourier transform. IEEE Trans. Pattern Anal. Mach. Intell. 95, 700–703 (1987)
Deriche, R., Blaszka, T.: Recovering and characterizing image features using an efficient model based approach. In: Proc. of ICCVPR, pp. 530–535 (1993)
Djabelkhir, F., Khamadja, M., Odet, C.: Level set constrained segmentation using local curvature. In: Proc. of ISPA, pp. 152–155 (2007)
Faugeras, O.: Tree-Dimensional Computer Vision. MIT Press, Cambridge (1993)
Forstner, W.: A feature based correspondence algorithm for image matching. Int. Arch. Photogramm. Remote Sens. 26, 150–166 (1986)
Fusiello, A., Roberto, V., Trucco, E.: Efficient stereo with multiple windowing. In: CVPR (1997)
Gao, D., Vasconcelos, N.: Discriminant saliency for visual recognition from cluttered scenes. In: Proc. of Neural Information Processing Systems (NIPS), pp. 481–488 (2004)
Giachetti, A.: Matching techniques to compute image motion. Int. J. Image Vis. Comput. 18(3), 245–258 (2000)
Grimson, E.: Object Recognition by Computer: The Role of Geometric Constraints. MIT Press, Cambridge (1990)
Hansen, D., Pece, A.: Iris tracking with feature free contours. In: Proc. of AMFG, pp. 208–214 (2003)
Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satisfaction problems. Artif. Intell. 14, 263–313 (1980)
Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. of the 4th Alvey Vision Conference, pp. 147–151 (1988)
Hongjun, J., Li, Z.: A new cross diamond search algorithm for block motion estimation. In: Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, vol. 3, pp. 357–360 (2004)
Hu, X., Ahuja, N.: Feature extraction and matching as signal detection. Int. J. Pattern Recognit. Artif. Intell. 8(6), 1343–1379 (1994)
Hueckel, M.: An operator which locates edges in digitized pictures. J. Assoc. Comput. Mach. 18(1), 113–125 (1971)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)
Kanade, T., Okutomi, M.A.: Stereo matching algorithm with an adaptive window: theory and experiment. IEEE Trans. Pattern Anal. Mach. Intell. 16(9), 920–932 (1994)
Ke, Y., Sukthankar, R.: PC-SIFT: a more distinctive representation for local image descriptors. In: Proc. IEEE CVPR, vol. 2, pp. 506–513 (2004)
Keller, Y., Averbuch, A., Miller, O.: Robust phase correlation. In: Proc. of ICPR, pp. 740–743 (2004)
Khan, J.F.: Empirical mode decomposition based interest point detector. In: IEEE ICASSP, pp. 1317–1320 (2008)
Kishore, M.S., Veerabhadra Rao, K.: Robust correlation tracker. Sâdhana 26(3), 227–236 (2001)
Kitchen, L., Rosenfeld, A.: Gray-level corner detection. Pattern Recognit. Lett. 1(2), 54–69 (1982)
Koga, T., Linuma, K., Hirano, A., Iijima, Y., Ishiguro, T.: Motion-compensated interframe coding for video conferencing. In: Proc. of NTC, pp. C9.6.1–9.6.5 (1981)
Li, R., Zeng, B., Liou, M.: A new three-step search algorithm for block motion estimation. IEEE Trans. Circuits Syst. Video Technol. 4(4), 438–442 (1994)
Liu, H., Guo, B., Feng, Z.: Pseudo-log-polar Fourier transform for image registration. Signal Process. Lett. 13(1), 17–20 (2006)
Long, P., Giraudon, G.: Stereo matching based on contextual line-region primitives. In: Proc. of Int. Conference on Pattern Recognition, pp. 974–977 (1986)
Lotti, J.L., Giraudon, G.: Adaptive window algorithm for aerial image stereo. In: Proc. ICPR, pp. 701–703 (1994)
Lowe, D.: Distinctive image features from scale invariant key points. Int. J. Comput. Vis. 60, 91–110 (2004)
Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. of the 7th Int. Joint Conference on Artificial Intelligence, pp. 674–679 (1981)
Manjunath, B.S., Shekar, C., Chellapa, R.: A new approach to image feature detection with applications. Pattern Recognit. 29, 627–640 (1996)
Marr, D., Poggio, T.: Cooperative computation of stereo disparity. Science 194, 283–287 (1976)
Martin, L., Hede, P., Leroux, Ch., Pissaloux, E.: Orientation filtering: a fast uncalibrated image matching method. In: Proc. of IEEE Int. Conf. on Signal Processing, pp. 1500–1504 (2006)
Martinez, F., Carbone, A., Pissaloux, F.: Radial symmetry guided particle filter for robust iris tracking. In: Proc. of IAPR CAIP (2011)
Masuda, T., Sakaue, K., Yokoya, N.: Registration and integration of multiple range images for 3D model construction. In: Proc. of CVPR (1996)
Maybank, S.: A Probabilistic definition of salient regions for image matching. Neurocomputing (2012, to appear)
Merigot, A.: Associative nets: a graph based parallel computing model. IEEE Trans. Comput. 46(5), 558–571 (1997)
Moravec, H.: Toward automatic visual obstacle avoidance. In: IJCAI, pp. 584–592 (1977)
Mudge, T.N., Turney, J.L., Volta, R.A.: Automatic generation of salient features for the recognition of partially occluded parts. Robotica 5, 117–127 (1987)
Ni, Y., Merigot, A., Devos, F.: SPHINX-a VLSI processing element chip for pyramid computer. In: ASIC Seminar and Exhibit, 5-3/1-4 (1989)
Paris, S., Hasinoff, S.W., Kautz, J.: Local Laplacian filters: edge-aware image processing with a Laplacian pyramid. ACM Trans. Graph. 30(4) (2011)
Pelillo, M.: Matching free trees, maximal cliques and monotone game dynamics. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1535–1541 (2002)
Pelillo, M., Siddiqi, K., Zucker, S.W.: Matching hierarchical structures using association graphs. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1105–1120 (1999)
Pissaloux, E., Le Coat, F., Bonnin, P., Bezencenet, G., Durbin, F., Tissot, A.: A very fast dynamic programming based parallel algorithm for aerial image matching. In: SPIE ’s 11th Annual Int. Symp. on Aerospace/Defence Sensing, Simulation and Control, vol. 3069, pp. 354–360 (1997)
Pissaloux, E., Le Coat, F., Tissot, A., Durbin, F.: An adaptive parallel system dedicated to projective image matching. In: Proc. of IEEE ICIP (2000)
Pissaloux, E., Chen, Y., Velazquez, R.: Image matching optimization via vision and inertial data fusion: application to navigation of the visually impaired. Int. J. Image Graph. 10(4), 545–555 (2010)
Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Mutual information based registration of medical images: a survey. IEEE Trans. Med. Imaging 22(8), 986–1004 (2003)
Po, L., Ma, W.: A novel four-step search algorithm for block motion estimation. IEEE Trans. Circuits Syst. Video Technol. 6(3), 313–317 (1996)
Pollard, S.B., Mayhew, J.E.W., Frisby, J.P.: PMF: a stereo correspondence algorithm using a disparity gradient constraint. Perception 14, 449–470 (1985)
Quenot, G.M.: The orthogonal algorithm for optical flow detection using dynamic programming. In: IEEE ICASSP, vol. 3, pp. 249–252 (1992)
Ranade, S., Rosenfeld, A.: Point pattern matching by relaxation. Pattern Recognit. 12(4), 269–275 (1980)
Reddy, B.S., Chatterji, B.N.: An FFT-based technique for fast image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996)
Remagnino, P., Brand, P., Mohr, R.: Correlation techniques in adaptive template matching with uncalibrated cameras. In: SPIE Int. Symp. on Photonic Sensors and Control for Commercial Applications, vol. III-2356, pp. 252–253 (1994)
Rosenfeld, A., Hummel, R.A., Zucker, S.W.: Scene labelling by relaxation operation. IEEE Trans. Syst. Man Cybern. 6(6), 420–433 (1976)
Rusinkiewicz, S., Levoy, M.: Efficient variant of the ICP algorithm. In: Proc. of 3DIM, pp. 145–152 (2001)
Scharstein, D., Szeliski, R.: Stereo matching with nonlinear diffusion. Int. J. Comput. Vis. 28(2), 155–174 (1998)
Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. Int. J. Comput. Vis. 37(2), 151–172 (2000)
Shi, J., Tomasi, C.: Good feature to track. In: Proc. IEEE CVPR, pp. 593–600 (1994)
Sidibe, D., Montesinos, Ph., Janaqi, S.: Fast and robust image matching using contextual information and relaxation. In: Proc. of Int. Conference on Computer Vision Theory and Applications, pp. 68–75 (2007)
Smith, S.M., Brady, J.M.: SUSAN: a new approach to low level image processing. Int. J. Comput. Vis. 23(1), 45–78 (1997)
Sojka, E.: A new approach to detecting the corners in digital images. In: IEEE ICIP, vol. 3, pp. 445–448 (2003)
Suveg, I., Vosselman, G.: Mutual information based evaluation of 3D building models. In: ICPR, vol. III, pp. 557–560 (2002)
Tanizaki, H.: Non-Gaussian state-space modeling of nonstationary time series. J. Am. Stat. Assoc. 82, 1032–1063 (1987)
Thevenaz, P., Unser, M.: Optimization of mutual information for multiresolution image registration. IEEE Trans. Image Process. 9(12) (2000)
Tissainayagam, P., Suter, D.: Assessing the performance of corner detectors for point feature tracking applications. Image Vis. Comput., 663–679 (2004)
Trujillo, L., Olague, G.: Automated design of image operators that detect interest points. Evol. Comput. 16(4), 483–507 (2008)
Trujillo, L., Olague, G., de Vega, F.F., Lutton, E.: Evolutionary feature selection for probabilistic object recognition, novel object detection and object saliency estimation using gmms. In: Proc. 18th BMVC, vol. 2, pp. 630–639 (2007)
Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis. 3(3), 177–280 (2008)
Tzimiropoulos, G., Argyriou, V., Stathaki, T.: Subpixel registration with gradient correlation. IEEE Trans. Image Process. 20(6), 1761–1767 (2011)
Vincent, E.: On feature point matching, in the calibrated and uncalibrated contexts, between widely and narrowly separated images. PhD thesis, Ottawa Carleton Institute for Computer Science (2004)
Weik, S.: Registration of 3-D partial surface models using luminance and depth information. In: Proc. of 3DIM (1997)
Weng, J., Cohen, P., Herniou, M.: Camera calibration with distortion models and accuracy evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 14(10), 965–980 (1992)
Wu, H., Kitagawa, Y., Wada, T., Kato, T., Chen, Q.: Tracking iris contour with a 3D eye-model for gaze estimation. In: Proc. of ACCV, pp. 688–697 (2007)
Yang, G., Stewart, C.V., Sofka, M., Tsai, L.C.: Registration of challenging image pairs: initialization, estimation and decision. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1973–1989 (2007)
Zhang, Z.: Le probleme de la mise en correspondance: l’etat de l’art. INRIA, RR N’ 2146 (1993)
Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)
Zhu, S., Ma, K.: A new diamond search algorithm for fast block-matching motion estimation. IEEE Trans. Image Process. 9, 287–290 (2000)
Zitova, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21, 977–1000 (2003)
Zitova, B., Kautsky, J., Peters, G., Flusser, J.: Robust detection of significant points in multiframe images. Pattern Recognit. Lett. 20, 199–206 (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Pissaloux, E.E., Maybank, S., Velázquez, R. (2013). On Image Matching and Feature Tracking for Embedded Systems: A State-of-the-Art. In: Chatterjee, A., Nobahari, H., Siarry, P. (eds) Advances in Heuristic Signal Processing and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37880-5_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-37880-5_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37879-9
Online ISBN: 978-3-642-37880-5
eBook Packages: Computer ScienceComputer Science (R0)