Skip to main content

A Survey of Kurtosis Optimization Schemes for MISO Source Separation and Equalization

  • Chapter
Advances in Heuristic Signal Processing and Applications

Abstract

Blind source separation and equalization aim at recovering a set of unknown source signals from their linearly distorted mixtures observed at a sensor array output, with little or no prior knowledge about the sources or the distorting channel. This fundamental signal processing problem arises in a broad range of applications such as multiuser digital communications, biomedical data analysis, and seismic exploration. Put forward over three decades ago, the normalized fourth-order cumulant, also known as kurtosis, has arguably become one of the most popular blind source separation and equalization criteria. Using multiple-input single-output (MISO) filter structures for single source extraction combined with suitable deflation procedures, the kurtosis contrast yields separation algorithms free of spurious extrema in ideal system conditions. The lack of closed-form solutions, however, calls for numerical optimization schemes. The present chapter reviews some of the iterative algorithms most widely used for MISO source separation and equalization based on kurtosis. These include gradient and Newton search methods, algorithms with optimal step-size selection, as well as techniques based on reference signals. Their main features are briefly summarized and their performance is illustrated by some numerical experiments in digital communications and biomedical signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recording kindly provided by the Hemodynamics Department, Clinical University Hospital, University of Valencia, Spain, and ITACA-Bioingenieria, Polytechnic University of Valencia, Spain.

References

  1. Amari, S.: Natural gradient works efficiently in learning. Neural Comput. 10(2), 251–276 (1998)

    Article  MathSciNet  Google Scholar 

  2. Amari, S., Cichocki, A.: Adaptive blind signal processing—neural network approaches. Proc. IEEE 86(10), 2026–2048 (1998)

    Article  Google Scholar 

  3. Belouchrani, A., Abed-Meraim, K., Cardoso, J.F., Moulines, E.: A blind source separation technique using second-order statistics. IEEE Trans. Signal Process. 45(2), 434–444 (1997)

    Article  Google Scholar 

  4. Benveniste, A., Métivier, M., Priouret, P.: Algorithmes Adaptatifs et Approximations Stochastiques. Masson, Paris (1987). English translation by S.S. Wilson, Adaptive Algorithms and Stochastic Approximations. Springer, Berlin (1990)

    Google Scholar 

  5. Bermejo, S.: Finite sample effects in higher order statistics contrast functions for sequential blind source separation. IEEE Signal Process. Lett. 12(6), 481–484 (2005)

    Article  Google Scholar 

  6. Bermejo, S.: Finite sample effects of the fast ICA algorithm. Neurocomputing 71(1–3), 392–399 (2007)

    Article  Google Scholar 

  7. Bingham, E., Hyvärinen, A.: A fast fixed-point algorithm for independent component analysis of complex valued signals. Int. J. Neural Syst. 10(1), 1–8 (2000)

    Google Scholar 

  8. Cardoso, J.F.: On the performance of orthogonal source separation algorithms. In: Proc. EUSIPCO-94, VII European Signal Processing Conference, Edinburgh, UK, pp. 776–779 (1994)

    Google Scholar 

  9. Cardoso, J.F., Laheld, B.H.: Equivariant adaptive source separation. IEEE Trans. Signal Process. 44(12), 3017–3030 (1996)

    Article  Google Scholar 

  10. Castella, M., Moreau, E.: Generalized identifiability conditions for blind convolutive MIMO separation. IEEE Trans. Signal Process. 57(7), 2846–2852 (2009)

    Article  MathSciNet  Google Scholar 

  11. Castella, M., Moreau, E.: A new optimization method for reference-based quadratic contrast functions in a deflation scenario. In: Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Taipei, Taiwan, R.O.C, pp. 3161–3164 (2009)

    Google Scholar 

  12. Castella, M., Moreau, E.: Reference based contrast functions in a semi-blind context. In: Proc. of ICA’09, 8th International Conference on Independent Component Analysis and Signal Separation, Paraty-RJ, Brazil. LNCS, vol. 5441, pp. 9–16 (2009)

    Chapter  Google Scholar 

  13. Castella, M., Moreau, E.: New kurtosis optimization schemes for MISO equalization. IEEE Trans. Signal Process. 60(3), 1319–1330 (2012)

    Article  MathSciNet  Google Scholar 

  14. Castella, M., Bianchi, P., Chevreuil, A., Pesquet, J.C.: A blind source separation framework for detecting CPM sources mixed by a convolutive MIMO filter. Signal Process. 86(8), 1950–1967 (2006)

    Article  MATH  Google Scholar 

  15. Castella, M., Chevreuil, A., Pesquet, J.C.: Mélanges convolutifs. In: Comon, P., Jutten, C. (eds.) Séparation de Sources, Tome 1: Concepts de Base et Analyse en Composantes Indépendantes, pp. 231–272. Hermès, Paris (2007). Chap. 7

    Google Scholar 

  16. Castella, M., Rhioui, S., Moreau, E., Pesquet, J.C.: Quadratic higher-order criteria for iterative blind separation of a MIMO convolutive mixture of sources. IEEE Trans. Signal Process. 55(1), 218–232 (2007)

    Article  MathSciNet  Google Scholar 

  17. Castella, M., Chevreuil, A., Pesquet, J.C.: Convolutive mixtures. In: Comon, P., Jutten, C. (eds.) Handbook of Blind Source Separation, Independent Component Analysis and Applications, pp. 281–324. Academic Press, New York (2010). Chap. 8

    Chapter  Google Scholar 

  18. Castells, F., Rieta, J.J., Millet, J., Zarzoso, V.: Spatiotemporal blind source separation approach to atrial activity estimation in atrial tachyarrhythmias. IEEE Trans. Biomed. Eng. 52(2), 258–267 (2005)

    Article  Google Scholar 

  19. Comon, P.: Independent component analysis, a new concept? Signal Process. 36(3), 287–314 (1994). Special Issue on Higher-Order Statistics

    Article  MATH  Google Scholar 

  20. Comon, P.: Independent component analysis, contrasts, and convolutive mixtures. In: Proc. 2nd IMA International Conference on Mathematics in Communications, Lancaster, UK, pp. 10–17 (2002)

    Google Scholar 

  21. Comon, P.: Contrasts, independent component analysis, and blind deconvolution. Int. J. Adapt. Control Signal Process. 18(3), 225–243 (2004). Special Issue on Blind Signal Separation

    Article  MATH  Google Scholar 

  22. Comon, P., Jutten, C. (eds.): Handbook of Blind Source Separation, Independent Component Analysis and Applications. Academic Press, Oxford (2010)

    Google Scholar 

  23. Comon, P., Moreau, E.: Improved contrast dedicated to blind separation in communications. In: Proc. ICASSP-97, 22nd IEEE International Conference on Acoustics, Speech and Signal Processing, Munich, Germany, pp. 3453–3456 (1997)

    Google Scholar 

  24. De Lathauwer, L., Callaerts, D., De Moor, B., Vandewalle, J.: Fetal electrocardiogram extraction by source subspace separation. In: Proc. IEEE/ATHOS Signal Processing Conference on Higher-Order Statistics, Girona, Spain, pp. 134–138 (1995)

    Google Scholar 

  25. De Lathauwer, L., De Moor, B., Vandewalle, J.: Fetal electrocardiogram extraction by blind source subspace separation. IEEE Trans. Biomed. Eng. 47(5), 567–572 (2000). Special Topic Section on Advances in Statistical Signal Processing for Biomedicine

    Article  Google Scholar 

  26. Delfosse, N., Loubaton, P.: Adaptive blind separation of independent sources: a deflation approach. Signal Process. 45(1), 59–83 (1995)

    Article  MATH  Google Scholar 

  27. Ding, Z., Nguyen, T.: Stationary points of a kurtosis maximization algorithm for blind signal separation and antenna beamforming. IEEE Trans. Signal Process. 48(6), 1587–1596 (2000)

    Article  Google Scholar 

  28. Donoho, D.: On minimum entropy deconvolution. In: Proc. 2nd Applied Time Series Analysis Symposium, Tulsa, OK, pp. 565–608 (1980)

    Google Scholar 

  29. Douglas, S.C.: On the convergence behavior of the FastICA algorithm. In: Proc. ICA-2003, 4th International Symposium on Independent Component Analysis and Blind Signal Separation, Nara, Japan, pp. 409–414 (2003)

    Google Scholar 

  30. Douglas, S.C.: Fixed-point algorithms for the blind separation of arbitrary complex-valued non-Gaussian signal mixtures. EURASIP J. Adv. Signal Process. (2007). doi:10.1155/2007/36525

    Google Scholar 

  31. Dubroca, R., De Luigi, C., Castella, M., Moreau, E.: A general algebraic algorithm for blind extraction of one source in a MIMO convolutive mixture. IEEE Trans. Signal Process. 58(5), 2484–2493 (2010)

    Article  MathSciNet  Google Scholar 

  32. Gesbert, D., Shafi, M., Shan-Shiu, D., Smith, P.J., Naguib, A.: From theory to practice: an overview of MIMO space-time coded wireless systems. IEEE J. Sel. Areas Commun. 21(3), 281–302 (2003)

    Article  Google Scholar 

  33. Godard, D.N.: Self-recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Trans. Commun. 28(11), 1867–1875 (1980)

    Article  Google Scholar 

  34. Hyvärinen, A.: One-unit contrast functions for independent component analysis: a statistical analysis. In: Proc. IEEE Neural Networks for Signal Processing Workshop, Amelia Island, FL, pp. 388–397 (1997)

    Google Scholar 

  35. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)

    Article  Google Scholar 

  36. Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Comput. 9(7), 1483–1492 (1997)

    Article  Google Scholar 

  37. Johnson, C.R., Schniter, P., Fijalkow, I., Tong, L., Behm, J.D., et al.: The core of FSE-CMA behavior theory. In: Haykin, S.S. (ed.) Unsupervised Adaptive Filtering, Vol. II: Blind Deconvolution, pp. 13–112. Wiley, New York (2000). Chap. 2

    Google Scholar 

  38. Li, H., Adali, T.: A class of complex ICA algorithms based on the kurtosis cost function. IEEE Trans. Neural Netw. 19(3), 408–420 (2008)

    Article  Google Scholar 

  39. Loubaton, P., Regalia, P.: Blind deconvolution of multivariate signals: a deflation approach. In: Proceedings of ICC, Geneva, Switzerland, pp. 1160–1164 (1993)

    Google Scholar 

  40. Moreau, E.: Criteria for complex sources separation. In: Proc. EUSIPCO-96, VII European Signal Processing Conference, Trieste, Italy, vol. II, pp. 931–934 (1996)

    Google Scholar 

  41. Moreau, E., Comon, P.: Contrasts. In: Comon, P., Jutten, C. (eds.) Handbook of Blind Source Separation, Independent Component Analysis and Applications, pp. 65–105. Academic Press, Oxford (2010). Chap. 3

    Chapter  Google Scholar 

  42. Moreau, E., Macchi, O.: Complex self-adaptive algorithms for source separation based on high order contrasts. In: Proc. EUSIPCO-94, VII European Signal Processing Conference, Edinburgh, UK, pp. 1157–1160 (1994)

    Google Scholar 

  43. Moreau, E., Macchi, O.: A one stage self-adaptive algorithm for source separation. In: Proc. ICASSP-94, 19th IEEE International Conference on Acoustics, Speech and Signal Processing, Adelaide, Australia, vol. 3, pp. 49–52 (1994)

    Google Scholar 

  44. Moreau, E., Macchi, O.: High order contrasts for self-adaptive source separation. Int. J. Adapt. Control Signal Process. 10(1), 19–46 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  45. Moreau, E., Pesquet, J.C.: Generalized contrasts for multichannel blind deconvolution of linear systems. IEEE Signal Process. Lett. 4(6), 182–183 (1997)

    Article  Google Scholar 

  46. Moreau, E., Thirion-Moreau, N.: Non symmetrical contrasts for sources separation. IEEE Trans. Signal Process. 47(8), 2241–2252 (1999)

    Article  Google Scholar 

  47. Moreau, E., Pesquet, J.C., Thirion-Moreau, N.: Convolutive blind signal separation based on asymmetrical contrast functions. IEEE Trans. Signal Process. 55(1), 356–371 (2007)

    Article  MathSciNet  Google Scholar 

  48. Novey, M., Adali, T.: Complex ICA by negentropy maximization. IEEE Trans. Neural Netw. 19(4), 596–609 (2008)

    Article  Google Scholar 

  49. Novey, M., Adali, T.: On extending the complex FastICA algorithm to noncircular sources. IEEE Trans. Signal Process. 56(5), 2148–2154 (2008)

    Article  MathSciNet  Google Scholar 

  50. Papadias, C.B.: Globally convergent blind source separation based on a multiuser kurtosis maximization criterion. IEEE Trans. Signal Process. 48(12), 3508–3519 (2000)

    Article  MathSciNet  Google Scholar 

  51. Pesquet, J.C., Moreau, E.: Cumulant based independence measures for linear mixtures. IEEE Trans. Inf. Theory 47(5), 1947–1956 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  52. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  53. Regalia, P.A.: A finite-interval constant modulus algorithm. In: Proc. ICASSP-2002, 27th International Conference on Acoustics, Speech and Signal Processing, Vol. III, Orlando, FL, pp. 2285–2288 (2002)

    Google Scholar 

  54. Rieta, J.J., Zarzoso, V., Millet-Roig, J., García-Civera, R., Ruiz-Granell, R.: Atrial activity extraction based on blind source separation as an alternative to QRST cancellation for atrial fibrillation analysis. In: Proc. Computers in Cardiology, Boston, MA, vol. 27, pp. 69–72 (2000)

    Google Scholar 

  55. Rieta, J.J., Castells, F., Sánchez, C., Zarzoso, V., Millet, J.: Atrial activity extraction for atrial fibrillation analysis using blind source separation. IEEE Trans. Biomed. Eng. 51(7), 1176–1186 (2004)

    Article  Google Scholar 

  56. Ristaniemi, T., Joutsensalo, J.: Advanced ICA-based receivers for block fading DS-CDMA channels. Signal Process. 82(3), 417–431 (2002)

    Article  MATH  Google Scholar 

  57. Sato, Y.: A method of self-recovering equalization for multi-level amplitude modulation. IEEE Trans. Commun. 23, 679–682 (1975)

    Article  Google Scholar 

  58. Shalvi, O., Weinstein, E.: New criteria for blind deconvolution of nonminimum phase systems (channels). IEEE Trans. Inf. Theory 36(2), 312–321 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  59. Simon, C., Loubaton, P., Jutten, C.: Separation of a class of convolutive mixtures: a contrast function approach. Signal Process. 4(81), 883–887 (2001)

    Article  Google Scholar 

  60. Stuart, A., Ord, K.: Kendall’s Advanced Theory of Statistics, vol. 1, 6th edn. Hodder Arnold, Sevenoaks (1994)

    Google Scholar 

  61. Thirion-Moreau, N., Moreau, E.: Generalized criteria for blind multivariate signal equalization. IEEE Signal Process. Lett. 9(2), 72–74 (2002)

    Article  Google Scholar 

  62. Tichavský, P., Koldovský, Z., Oja, E.: Performance analysis of the FastICA algorithm and Cramér-Rao bounds for linear independent component analysis. IEEE Trans. Signal Process. 54(4), 1189–1203 (2006)

    Article  Google Scholar 

  63. Treichler, J.R., Agee, B.G.: A new approach to multipath correction of constant modulus signals. IEEE Trans. Acoust. Speech Signal Process. 31(2), 459–472 (1983)

    Article  Google Scholar 

  64. Tugnait, J.K.: Identification and deconvolution of multichannel linear non-Gaussian processes using higher order statistics and inverse filter criteria. IEEE Trans. Signal Process. 45(3), 658–672 (1997)

    Article  MathSciNet  Google Scholar 

  65. Widrow, B., Glover, J.R., McCool, J.M., et al.: Adaptive noise cancelling: principles and applications. Proc. IEEE 63(12), 1692–1716 (1975)

    Article  Google Scholar 

  66. Wiggins, R.A.: Minimum entropy deconvolution. Geoexploration 16, 21–35 (1978)

    Article  Google Scholar 

  67. Zarzoso, V.: Extraction of ECG characteristics using source separation techniques: exploiting statistical independence and beyond. In: Naït-Ali, A. (ed.) Advanced Biosignal Processing, pp. 15–47. Springer, Berlin (2009). Chap. 2

    Chapter  Google Scholar 

  68. Zarzoso, V., Comon, P.: Blind and semi-blind equalization based on the constant power criterion. IEEE Trans. Signal Process. 53(11), 4363–4375 (2005)

    Article  MathSciNet  Google Scholar 

  69. Zarzoso, V., Comon, P.: Blind channel equalization with algebraic optimal step size. In: Proc. EUSIPCO-2005, XIII European Signal Processing Conference, Antalya, Turkey (2005)

    Google Scholar 

  70. Zarzoso, V., Comon, P.: Semi-blind constant modulus equalization with optimal step size. In: Proc. ICASSP-2005, 30th International Conference on Acoustics, Speech and Signal Processing, Vol. III, Philadelphia, PA, pp. 577–580 (2005)

    Chapter  Google Scholar 

  71. Zarzoso, V., Comon, P.: Comparative speed analysis of FastICA. In: Proc. ICA-2007, 7th International Conference on Independent Component Analysis and Signal Separation, London, UK, pp. 293–300 (2007)

    Chapter  Google Scholar 

  72. Zarzoso, V., Comon, P.: Optimal step-size constant modulus algorithm. IEEE Trans. Commun. 56(1), 10–13 (2008)

    Article  Google Scholar 

  73. Zarzoso, V., Comon, P.: Automated extraction of atrial fibrillation activity from the surface ECG using independent component analysis in the frequency domain. In: Proc. Medical Physics and Biomedical Engineering World Congress, pp. 395–398 (2009). Invited

    Google Scholar 

  74. Zarzoso, V., Comon, P.: Robust independent component analysis by iterative maximization of the kurtosis contrast with algebraic optimal step size. IEEE Trans. Neural Netw. 21(2), 248–261 (2010)

    Article  Google Scholar 

  75. Zarzoso, V., Nandi, A.K.: Noninvasive fetal electrocardiogram extraction: blind separation versus adaptive noise cancellation. IEEE Trans. Biomed. Eng. 48(1), 12–18 (2001)

    Article  Google Scholar 

  76. Zarzoso, V., Comon, P., Kallel, M.: How fast is FastICA? In: Proc. EUSIPCO-2006, XIV European Signal Processing Conference, Florence, Italy (2006)

    Google Scholar 

  77. Zarzoso, V., Comon, P., Slock, D.: Semi-blind methods for communications. In: Comon, P., Jutten, C. (eds.) Handbook of Blind Source Separation, Independent Component Analysis and Applications, pp. 593–638. Academic Press, Oxford (2010). Chap. 15

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Castella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Castella, M., Moreau, E., Zarzoso, V. (2013). A Survey of Kurtosis Optimization Schemes for MISO Source Separation and Equalization. In: Chatterjee, A., Nobahari, H., Siarry, P. (eds) Advances in Heuristic Signal Processing and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37880-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37880-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37879-9

  • Online ISBN: 978-3-642-37880-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics