Skip to main content

Improving Power Efficiency in WBAN Communication Using Wake Up Methods

  • Conference paper
Wireless Mobile Communication and Healthcare (MobiHealth 2012)

Abstract

Power efficient communication in a Wireless Body Area Network (WBAN) is critical for successful system deployment. Stringent constraints of size and weight of sensors significantly limit available sensor power, particularly in the case of implantable sensors. This paper discusses and analyses methods that could be used to improve power efficiency of implantable WBAN systems, with focus on the Wake Up Radio (WUR), which allows power efficient listening of wireless channel. The paper presents analysis of existing hardware and design trade offs in WUR implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Istepanian, R., Jovanov, E., Zhang, Y.: Guest editorial introduction to the special section on M-Health: beyond seamless mobility and global wireless Health-Care connectivity. IEEE Transactions on Information Technology in Biomedicine 8(4), 405–414 (2004)

    Article  Google Scholar 

  2. Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., Saleem, S., Rahman, Z., Kwak, K.: A comprehensive survey of wireless body area networks. Journal of Medical Systems, 1–30 (2010)

    Google Scholar 

  3. Milosevic, M., Shrove, M., Jovanov, E.: Applications of smartphones for ubiquitous health monitoring and wellbeing management. JITA 1(1), 7–15 (2011)

    Google Scholar 

  4. Jovanov, E., Milenkovic, A.: Body area networks for ubiquitous healthcare applications: Opportunities and challenges. J. Med. Syst. (2011)

    Google Scholar 

  5. Shi, W.V., Zhou, M.: Body sensors applied in pacemakers: A survey. IEEE Sensors Journal 12(6), 1817–1827 (2012)

    Article  Google Scholar 

  6. Bluetooth SIG: Specification of the bluetooth system, version 4.0 (2010)

    Google Scholar 

  7. ZigBee Alliance: Zigbee wireless standard (2003), http://www.zigbee.org/Standards/Overview.aspx

  8. Drude, S.: Requirements and application scenarios for body area networks. In: Mobile and Wireless Communications Summit 16th IST pp. 1–5 (2007)

    Google Scholar 

  9. Marinkovic, S.J., Popovici, E.M., Spagnol, C., Faul, S., Marnane, W.P.: Energy-efficient low duty cycle MAC protocol for wireless body area networks. IEEE Transactions on Information Technology in Biomedicine 13(6), 915–925 (2009)

    Article  Google Scholar 

  10. Yan, L., Zhong, L., Jha, N.: Energy comparison and optimization of wireless body-area network technologies. In: Proc. Int’l Conf. Body Area Networks, BodyNets, pp. 1–8 (2007)

    Google Scholar 

  11. Ullah, S., Kwak, K.S.: An ultra low-power and traffic-adaptive medium access control protocol for wireless body area network. Journal of Medical Systems, 1–10 (2010)

    Google Scholar 

  12. Hoiydi, E., Decotignie, J.: Wisemac: An ultra low power mac protocol for the downlink of infrastructure wsns. In: Ninth International Symposium on Computers and Communications (ISCC), pp. 244–251 (2004)

    Google Scholar 

  13. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor networks. In: 2nd International Conference on Embedded Networked Sensor Systems, pp. 95–107 (2004)

    Google Scholar 

  14. Hauer, J.-H., Handziski, V., Köpke, A., Willig, A., Wolisz, A.: A component framework for content-based publish/subscribe in sensor networks. In: Verdone, R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 369–385. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Wei, Y., Heidemann, J., Estrin, D.: An energy-efficient mac protocol for wireless sensor networks. In: IEEE Infocom Conference, pp. 1567–1576 (2002)

    Google Scholar 

  16. van Dam, T., Langendoen, K.: An adaptive energy-efficient mac protocol for wsns. In: 1st ACM Conf. on Embedded Networked Sensor Systems (SenSys), pp. 171–180 (2003)

    Google Scholar 

  17. Khan, N., Boncelet, C.: Pmac: Energy efficient medium access control protocol for wireless sensor networks. In: IEEE Military Communications Conference, pp. 1–5 (2006)

    Google Scholar 

  18. Lee, W., Datta, A., Cardell-Oliver, R.: Fleximac: A flexible tdma-based mac protocol for fault-tolerant and energy-efficient wireless sensor networks. In: 14th IEEE Int’l Conf. Networks (ICON), pp. 1–6 (2006)

    Google Scholar 

  19. Elsaify, A., Padhy, P., Martinez, K., Zou, G.: Gwmac- a tdma based mac protocol for a glacial sensor network. In: 4th ACM PE-WASUN, pp. 54–61 (2007)

    Google Scholar 

  20. van Hoeselt, L., Niebergt, T., Kipt, H.J., Havingar, P.: Advantages of a tdma based, energy-efficient, self-organizing mac protocol for wsns. In: IEEE 59th Vehicular Technology Conference, vol. 3, pp. 1598–1602 (2004)

    Google Scholar 

  21. Chen, Z., Khokhar, A.: Self organization and energy efficient TDMA MAC protocol by wake up for wireless sensor networks. In: First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, pp. 335–341 (2004)

    Google Scholar 

  22. Omeni, O., Wong, A., Burdett, A., Toumazou, C.: Energy efficient medium access protocol for wireless medical body area sensor networks. IEEE Transactions on Biomedical Circuits and Systems 2, 251–259 (2007)

    Article  Google Scholar 

  23. Milenkovic, A., Otto, C., Jovanov, E.: Wireless sensor network for personal health monitoring: issues and an implementation. Computer Communications 29, 2521–2533 (2006)

    Article  Google Scholar 

  24. Latre, B., Braem, B., Moerman, I., Blondia, C., Reusens, E., Joseph, W., Demeester, P.: A low-delay protocol for multi-hop wireless body area networks. In: 4th Int’l Conference, MobiQuitous, pp. 1–8 (2007)

    Google Scholar 

  25. Cionca, V., Newe, T., Dadarlat, V.: Tdma protocol requirements for wireless sensor networks. In: 2nd Int’l Conf., Sensorcomm, pp. 30–35 (2008)

    Google Scholar 

  26. Cano, C., Bellalta, B., Sfairopoulou, A., Oliver, M.: Low energy operation in wsns: A survey of preamble sampling mac protocols. Computer Networks 55(15), 3351–3363 (2011)

    Article  Google Scholar 

  27. El-Hoiydi, A.: Aloha with preamble sampling for sporadic traffic in ad hoc wireless sensor networks. In: IEEE International Conference on Communications, ICC 2002, vol. 5, pp. 3418–3423. IEEE (2002)

    Google Scholar 

  28. Hill, J., Culler, D.: Mica: A wireless platform for deeply embedded networks. IEEE Micro 22(6), 12–24 (2002)

    Article  Google Scholar 

  29. Lim, S., Kim, S.-H., Cho, J., An, S.-S.: Medium access control with an energy-efficient algorithm for wireless sensor networks. In: Cuenca, P., Orozco-Barbosa, L. (eds.) PWC 2006. LNCS, vol. 4217, pp. 334–343. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  30. Wong, K., Arvind, D.: Speckmac: low-power decentralised mac protocols for low data rate transmissions in specknets. In: Proceedings of the 2nd International Workshop on Multi-Hop ad Hoc Networks: from Theory to Reality, pp. 71–78. ACM (2006)

    Google Scholar 

  31. Lim, S., Ji, Y., Cho, J., An, S.-S.: An ultra low power medium access control protocol with the divided preamble sampling. In: Youn, H.Y., Kim, M., Morikawa, H. (eds.) UCS 2006. LNCS, vol. 4239, pp. 210–224. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  32. Shi, X., Stromberg, G.: Syncwuf: An ultra low-power mac protocol for wireless sensor networks. IEEE Transactions on Mobile Computing 6(1), 115–125 (2007)

    Article  Google Scholar 

  33. Han, K., Lim, S., Lee, S., Lee, J., An, S.: Signaling-embedded short preamble mac for multihop wireless sensor networks. In: Information Networking. Towards Ubiquitous Networking and Services, pp. 1–10 (2008)

    Google Scholar 

  34. Lin, E., Rabaey, J., Wolisz, A.: Power-efficient rendez-vous schemes for dense wireless sensor networks. In: 2004 IEEE International Conference on Communications, vol. 7, pp. 3769–3776. IEEE (2004)

    Google Scholar 

  35. Mahlknecht, S., Bock, M.: Csma-mps: A minimum preamble sampling mac protocol for low power wireless sensor networks. In: Proceedings of the 2004 IEEE International Workshop on Factory Communication Systems, pp. 73–80. IEEE (2004)

    Google Scholar 

  36. Buettner, M., Yee, G., Anderson, E., Han, R.: X-mac: a short preamble mac protocol for duty-cycled wireless sensor networks. In: Proceedings of the 4th International Conference on Embedded Networked Sensor Systems, pp. 307–320. ACM (2006)

    Google Scholar 

  37. Liu, S., Fan, K., Sinha, P.: Cmac: an energy-efficient mac layer protocol using convergent packet forwarding for wireless sensor networks. ACM Transactions on Sensor Networks (TOSN) 5(4), 29 (2009)

    Article  Google Scholar 

  38. Bernardo, L., Oliveira, R., Pereira, M., Macedo, M., Pinto, P.: A wireless sensor mac protocol for bursty data traffic. In: IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2007, pp. 1–5. IEEE (2007)

    Google Scholar 

  39. Merlin, C., Heinzelman, W.: Schedule adaptation of low-power-listening protocols for wireless sensor networks. IEEE Transactions on Mobile Computing 9(5), 672–685 (2010)

    Article  Google Scholar 

  40. Zhang, X., Ansari, J., Mähönen, P.: Traffic aware medium access control protocol for wireless sensor networks. In: Proceedings of the 7th ACM International Symposium on Mobility Management and Wireless Access, pp. 140–148. ACM (2009)

    Google Scholar 

  41. Ye, W., Silva, F., Heidemann, J.: Ultra-low duty cycle mac with scheduled channel polling, pp. 321–334 (2006)

    Google Scholar 

  42. Anwander, M., Wagenknecht, G., Braun, T., Dolfus, K.: Beam: A burst-aware energy-efficient adaptive mac protocol for wireless sensor networks. In: International Conference on Networked Sensing Systems, INSS (2010)

    Google Scholar 

  43. Bing, L., Lin, Z., Huimin, Z.: An adaptive schedule medium access control for wireless sensor networks. In: Sixth International Conference on Networking, ICN 2007, p. 12. IEEE (2007)

    Google Scholar 

  44. Kumar, P., Gunes, M., Mushtaq, Q., Blywis, B.: A real-time and energy-efficient mac protocol for wireless sensor networks. International Journal of Ultra Wideband Communications and Systems 1(2), 128–142 (2009)

    Article  Google Scholar 

  45. Avvenuti, M., Vecchio, A.: Adaptability in the b-mac+ protocol. In: International Symposium on Parallel and Distributed Processing with Applications, ISPA 2008, pp. 946–951. IEEE (2008)

    Google Scholar 

  46. Hurni, P., Braun, T.: MaxMAC: A maximally traffic-adaptive MAC protocol for wireless sensor networks. In: Silva, J.S., Krishnamachari, B., Boavida, F. (eds.) EWSN 2010. LNCS, vol. 5970, pp. 289–305. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  47. Cano, C., Bellalta, B., Sfairopoulou, A., Barceló, J.: A low power listening mac with scheduled wake up after transmissions for wsns. IEEE Communications Letters 13(4), 221–223 (2009)

    Article  Google Scholar 

  48. da Silva Jr., J.L., Shamberger, J., Ammer, M.J., Guo, C., Li, S., Shah, R., Tuan, T., Sheets, M., Rabaey, J.M., Nikolic, B.: et al.: Design methodology for PicoRadio networks. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 314–325 (2001)

    Google Scholar 

  49. Gu, L., Stankovic, J.A.: Radio-triggered wake-up for wireless sensor networks. Real-Time Systems 29(2), 157–182 (2005)

    Article  Google Scholar 

  50. Kim, H., Cho, H., Xi, Y., Kim, M., Kwon, S., Lim, J., Yang, Y.: CMOS passive wake-up circuit for sensor network applications. Microwave and Optical Technology Letters 52, 597–600 (2010)

    Article  Google Scholar 

  51. Protocols, E.R.F.I.: Uhf rfid protocol for communications at 860 mhz -960 mhz, version 1.0.9 (2005)

    Google Scholar 

  52. Lee, M.: Zero-bias detector yields high sensitivity with nanopower consumption. Linear Technology Magazine 8(1), 28 (1998)

    Google Scholar 

  53. Wenyi, C., Shuo, G., Xiao, W., Tingwen, X., Jingtian, X., Xi, T., Na, Y., Hao, M.: Analysis and design of power efficient semi-passive RFID tag. Journal of Semiconductors 31(7), 075013 (2010)

    Article  Google Scholar 

  54. Malinowski, M., Moskwa, M., Feldmeier, M., Laibowitz, M., Paradiso, J.A.: CargoNet: a low-cost micropower sensor node exploiting quasi-passive wakeup for adaptive asynchronous monitoring of exceptional events. In: Proceedings of the 5th International Conference on Embedded Networked Sensor Systems (SenSys), pp. 145–159 (2007)

    Google Scholar 

  55. Ansari, J., Pankin, D., Mahonen, P.: Radio-triggered wake-ups with addressing capabilities for extremely low power sensor network applications. International Journal of Wireless Information Networks 16(3), 118–130 (2009)

    Article  Google Scholar 

  56. Durante, M.S., Mahlknecht, S.: An ultra low power wakeup receiver for wireless sensor nodes. In: Proceedings of the Third International Conference on Sensor Technologies and Applications (SENSORCOMM), pp. 167–170 (2009)

    Google Scholar 

  57. Le-Huy, P., Roy, S.: Low-Power Wake-Up radio for wireless sensor networks. In: Mobile Networks and Applications, pp. 1–11 (2008)

    Google Scholar 

  58. Pletcher, N., Gambini, S., Rabaey, J.: A 52 μW wake-up receiver with -72 dbm sensitivity using an uncertain-IF architecture. IEEE Journal of Solid-State Circuits 44(1), 269–280 (2009)

    Article  Google Scholar 

  59. Hambeck, C., Mahlknecht, S., Herndl, T.: A 2.4 μw wake-up receiver for wireless sensor nodes with- 71dbm sensitivity. In: 2011 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 534–537. IEEE (2011)

    Google Scholar 

  60. der Doorn, B.V., Kavelaars, W., Langendoen, K.: A prototype Low-Cost wakeup radio for the 868 MHz band. Int. Journal of Sensor Networks 5(1), 22–32 (2009)

    Article  Google Scholar 

  61. Van Langevelde, R., Van Elzakker, M., Van Goor, D., Termeer, H., Moss, J., Davie, A.: An ultra-low-power 868/915 mhz rf transceiver for wireless sensor network applications. In: IEEE Radio Frequency Integrated Circuits Symposium, RFIC 2009, pp. 113–116. IEEE (2009)

    Google Scholar 

  62. Gamm, G., Sippel, M., Kostic, M., Reindl, L.: Low power wake-up receiver for wireless sensor nodes. In: 2010 Sixth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp. 121–126. IEEE (2010)

    Google Scholar 

  63. Fraunhofer Institute: Wakeup receiver (2010), http://www.iis.fraunhofer.de/en/bf/ic/komp/rf/hew.html

  64. Marinkovic, S.J., Popovici, E.M.: Nano-power wireless wake-up receiver with serial peripheral interface. IEEE Journal on Selected Areas in Communications 29, 1641–1647 (2011)

    Article  Google Scholar 

  65. Zarlink Semiconductor Inc.: Medical implantable rf transceiver mics rf telemetry (2010), http://www.zarlink.com/zarlink/zl70102-shortform-datasheet-jun10.pdf

  66. Rules, F.: Regulations: Mics band plan (2003)

    Google Scholar 

  67. Jelicic, V., Magno, M., Brunelli, D., Bilas, V., Benini, L.: Analytic comparison of wake-up receivers for wsns and benefits over the wake-on radio scheme. In: Proceedings of the 7th ACM Workshop on Performance Monitoring and Measurement of Heterogeneous Wireless and Wired Networks, pp. 99–106. ACM (2012)

    Google Scholar 

  68. Zussman, G., Segall, A.: Bluetooth time division duplex - analysis as a polling system, pp. 547–556. Columbia University (2004)

    Google Scholar 

  69. Farserotu, J., Gerrits, J., van Veenendaal, G., Lobeira, M., Long, J.: Csem fm-uwb proposal. IEEE P802.15 Working Group for Wireless Personal Area Networks, WPANs (2009)

    Google Scholar 

  70. Kamath, S.: Application note an092 - measuring bluetooth low energy power consumption. Texas Instruments (2010)

    Google Scholar 

  71. Selvig, B.: Application note an053 - measuring power consumption with cc2430 & z-stack. Texas Instruments (2007)

    Google Scholar 

  72. Miller, M., Vaidya, N.: A mac protocol to reduce sensor network energy consumption using a wakeup radio. IEEE Transactions on Mobile Computing, 228–242 (2005)

    Google Scholar 

  73. Marinkovic, S., Popovici, E.: Ultra low power signal oriented approach for wireless health monitoring. Sensors 12(6), 7917–7937 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Marinkovic, S., Popovici, E., Jovanov, E. (2013). Improving Power Efficiency in WBAN Communication Using Wake Up Methods. In: Godara, B., Nikita, K.S. (eds) Wireless Mobile Communication and Healthcare. MobiHealth 2012. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37893-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37893-5_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37892-8

  • Online ISBN: 978-3-642-37893-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics