Abstract
This work is to detect and prevent unprecedented data identified from lightweight resource constraint mobile sensor devices. In this work, event or error detection technique of Traag et. al., local-global outlier algorithm of Branch et. al., Teo and Tan’s protocol of group key management and Cerpa et. al protocol of Frisbee construction are integrated and modified for lightweight resource constraint devices [20][22]-[24]. The proposed technique in this work is better than other techniques because of: (a) scalability, (b) optimization of resources, (c) energy efficient and (d) secure in terms of collision resistant, compression, backward and forward secrecy. The deviations in modified form of proposed mechanism are corrected using virtual programmable nodes and results show that proposed scheme work with zero probability of error and attack.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zhou, L., Haas, Z.J.: Securing Ad Hoc Networks. IEEE Network 13(6), 24–30 (1999)
Heady, R., Luger, G., Maccabe, A., Servilla, M.: The architecture of a network level instrusion detection system, Computer Science Department, University of New Mexico. Tech. Rep. (1990)
Chen, J., Kher, S., Somani, A.: Distributed fault detection of wireless sensor networks. In: Proceedings of the 2006 Workshop on Dependability Issues in Wireless Ad Hoc Networks and Sensor Networks, pp. 65–72 (2006)
Luo, X., Dong, M., Huang, Y.: On distributed fault tolerant detection in wireless sensor networks. IEEE Transactions on computers 55(1), 58–70 (2006)
Krishnamachari, B., Iyengar, S.: Distributed Bayesian algorithms for fault tolerant event region detection in wireless sensor networks. IEEE Transactions on Computers 53(3), 241–250 (2004)
Martincic, F., Schwiebert, L.: Distributed event detection in sensor networks. In: Proceedings of Systems and Network Communication, pp. 43–48 (2006)
Ding, M., Chen, D., Xing, K., Cheng, X.: Localized fault tolerant event boundary detection in sensor networks. In: Proceesings of IEEE Conference of Computer and Communications Socities, pp. 902–913 (March 2005)
Silva, A.P.R., Martins, M.H.T., Rocha, B.P.S., Loureiro, A.A.F.: Decentralized intrusion detection in wireless sensor networks. In: Proceedings of the 1st ACM international Workshop on Quality of Service and Security in Wireless and Mobile Networks, pp. 16–23 (2005)
Bhuse, V., Gupta, A.: Anomaly intrusion detection in wireless sensor networks. Journal of High Speed Networks 15(1), 33–51 (2006)
Jurdak, R., Wang, X.R., Obst, O., Valencia, P.: Wireless Sensor Network Anomalies: Diagnosis and Detection Strategies. In: Tolk, A., Jain, L.C. (eds.) Intelligence-Based Systems Engineering. ISRL, vol. 10, pp. 309–325. Springer, Heidelberg (2011)
Buxton, H.: Learning and understanding dynamic scene activity: A review. Image and Vision Computing 21, 125–136 (2003)
Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. Syst. Man Cybern., Appl. Rev. 34(3), 334–352 (2004)
Chandola, V., Banerjee, A., Kumar, V.: Outlier Detection: A Survey. ACM Computing Surveys, 1–72 (2009)
Zhang, Y., Meratnia, N., Havinga, P.: Outlier Detection Techniques for Wireless Sensor Networks: A Survey. IEEE Communication Surveys & Tutorials 12(2) (2010)
Gogoi, P., Borah, B., Bhattacharyya, D.K.: Anomaly Detection Analysis of Intrusion Data using Supervised and Unsupervised Approach. Journal of Convergence Information Technology 5(1) (February 2010)
Gogoi, P., Bhattacharyya, D.K., Borah, B., Kalita, J.K.: A Survey of Outlier Detection Methods in Network Anomaly Identification. The Computer Journal 54(4), 570–588 (2011)
Hawkins, D.M.: Ident fication of outliers. Chapman and Hall, London (1980)
Knorr, E.M., Ng, R.T.: Algorithm for mining distance based outliers in large datasets. In: Proceedings of the 24th International Conference on Very Large Databases, New York, USA, pp. 392–403. Morgan Kaufmann (1998)
Karl, H., Williz, A.: Protocols and Architectures for Wireless Sensor Networks. John Wiley & Sons (2007)
Branch, J.W., Giannelia, C., Szymanski, B., Wolff, R., Kargupta, H.: In-Network Outlier Detection in Wireless Sensor Networks. Knowledge and Information Systems 31 (2012)
Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)
Teo, J.C.M., Tan, C.H.: Energy-Efficient and Scalable Group Key Agreement for Large Ad Hoc Networks. In: PE-WASUN’s 2005, October 10-13, pp. 114–121 (2005)
Kumar, A., Aggarwal, A.: Efficient Hierarchical Threshold Symmetric Group Key Management Protocol for Mobile Ad Hoc Networks. In: IC3, pp. 335–346 (2012)
Cerpa, A., Elson, J., Estrin, D., Girod, L., Hamilton, M., Zhao, J.: Habitat Monitoring: Application Driver for Wireless Communication Technology. In: Proceedings of the ACM SIGCOMM Workshop on Data Communication in Latin America and the Caribbean, San Jose, Costa Rica (2001)
Traag, V.A., Browet, A., Calabrese, F., Morlot, F.: Social Event Detection in Massive Mobile Phone Data Using Probabilistic Location Inference. In: Traag, V.A., Browet, A., Calabrese, F., Morlot, F. (eds.) SocialCom/PASSAT, October 9-11, pp. 625–628 (2011)
NS3 Simulator, http://www.nsnam.org
AVISPA toolkit, http://www.avispa-project.org
ProVerif protocol verifier toolkit, http://www.proverif.ens.fr
Burmester, M., Desmedt, Y.G.: A secure and efficient conference key distribution system. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286. Springer, Heidelberg (1995)
Yang, J., Wang, Y.: A New Outlier Detection Algorithms based on Markov chain. Advanced Materials Research 366, 456–459 (2012)
Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: Identifying Density Based Local Outliers. In: Proceedings of the ACM SIGMOD Conference, Dallas, TX (May 2000)
Wang, B., Perrizo, W.: RDF: a density-based outlier detection method using vertical data representation. In: IEEE Int. Conference on Data Mining, pp. 503–506 (2004)
Rajagopalan, S., Karwoski, R., Bartholmai, B., Robb, R.: Quantitative image analytics for strtified pulmonary medicine. In: IEEE Int. Symposium on Biomedical Imaging (ISBI), pp. 1779–1782 (2012)
Cheminod, M., Bertolotti, I.C., Durante, L., Sisto, R., Valenzano, A.: Tools for cryptograhic protocols analysis: A technical and experimental comparison. Journal on Computer Standards & Interfaces 31(5), 954–961 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Kumar, A., Gopal, K., Aggarwal, A. (2013). Outlier Detection and Treatment for Lightweight Mobile Ad Hoc Networks. In: Singh, K., Awasthi, A.K. (eds) Quality, Reliability, Security and Robustness in Heterogeneous Networks. QShine 2013. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37949-9_65
Download citation
DOI: https://doi.org/10.1007/978-3-642-37949-9_65
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37948-2
Online ISBN: 978-3-642-37949-9
eBook Packages: Computer ScienceComputer Science (R0)