Skip to main content

V2V Communication Channels: State of Knowledge, New Results, and What’s Next

  • Conference paper
Communication Technologies for Vehicles (Nets4Cars/Nets4Trains 2013)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 7865))

Included in the following conference series:

Abstract

This paper surveys the field of vehicle-to-vehicle (V2V) communication channels. Motivated by intelligent transportation systems and vehicular safety, V2V research has proliferated in recent years. We provide a short description of V2V communication systems, and the importance of key channel parameters. This is followed by a discussion of basic channel characteristics—the channel impulse response and channel transfer function, and their statistical description—and how V2V channels differ from the more familiar cellular radio channel. Modeling of the V2V channel is covered by a review of the literature on V2V channels, addressing path loss, delay spread, and Doppler spread. We describe the two most popular methods for modeling V2V channels, tapped-delay line models and geometry-based models, then briefly discuss multiple-antenna channels and the crucial V2V channel characteristic of non-stationarity. A potential channel classification scheme for V2V channels is given, and some recent results on the channel within parking garages, and on sloped terrain, are provided. We end the paper with a short discussion of what may come next in this vibrant field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. IEEE Vehicular Technology Magazine, Special Issue on V2V Communications 2(4) (December 2007)

    Google Scholar 

  2. Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., Weil, T.: Vehicular Networking: A Survey and Tutorial on Requirements, Architectures, Challenges, Standards, and Solutions. IEEE Comm. Surveys & Tutorials 13(4), 584–616 (2011)

    Article  Google Scholar 

  3. Zhu, J., Roy, S.: MAC for Dedicated Short Range Communications in Intelligent Transportation. IEEE Comm. Mag. 41(12), 60–67 (2003)

    Article  Google Scholar 

  4. Biswas, S., Tatchikou, R., Dion, F.: Vehicle-to-Vehicle Wireless Communication Protocols for Enhancing Highway Traffic Safety. IEEE Comm. Mag. 44(1), 74–82 (2006)

    Article  Google Scholar 

  5. Joerer, S., Sommer, C., Dressler, F.: Toward Reproducibility and Comparability of IVC Simulation Studies: A Literature Survey. IEEE Comm. Mag. 50(10), 82–88 (2012)

    Article  Google Scholar 

  6. Molisch, A.F., Karedal, J., Tufvesson, F., Paier, A., Bernado, L., Zemen, T., Klemp, O., Czink, N.: Vehicular Channel Characterization and Its Implication for Wireless System Design and Performance. Proc. IEEE 99(7), 1189–1212 (2011)

    Article  Google Scholar 

  7. Akki, A.S., Haber, F.: A Statistical Model of Mobile-to-Mobile Land Communication Channel. IEEE Trans. Veh. Tech. VT-35(1), 2–7 (1986)

    Article  Google Scholar 

  8. Akki, A.S.: Statistical Properties of Mobile-to-Mobile Land Communication Channels. IEEE Trans. Veh. Tech. 43(4), 826–831 (1994)

    Article  Google Scholar 

  9. Davis, J.S., Linnartz, J.P.M.G.: Measurements of Vehicle-to-Vehicle Propagation. In: Proc. Asilomar Conference, Monterey, CA, October 31-November 1 (1994)

    Google Scholar 

  10. Vatalaro, F., Forcella, A.: Doppler Spectrum in Mobile-to-Mobile Communications in the Presence of Three-Dimensional Multipath Scattering. IEEE Trans. Veh. Tech. 46(1), 213–219 (1997)

    Article  Google Scholar 

  11. ITS project (February 2013), http://www.its.dot.gov/index.htm

  12. National Highway Traffic Safety Administration, US DOT (February 2013), http://www-fars.nhtsa.dot.gov/Main/index.aspx

  13. Faezipour, M., Nourani, M., Saeed, A., Addepalli, S.: Progress and Challenges in Intelligent Vehicular Networks. Proc. ACM 55(2), 90–100 (2012)

    Article  Google Scholar 

  14. International Standards Organization (ISO), (February 2013), http://www.iso.org

  15. Matolak, D.W.: Channel Modeling for Vehicle-to-Vehicle Communications. IEEE Comm. Mag. 46(5), 76–83 (2008)

    Article  Google Scholar 

  16. Matolak, D.W., Frolik, J.: Worse-than-Rayleigh Fading: Experimental Results and Theoretical Models. IEEE Comm. Mag. 49(4), 140–146 (2011)

    Article  Google Scholar 

  17. Parsons, J.D.: The Mobile Radio Propagation Channel. John Wiley & Sons, New York (2000)

    Book  Google Scholar 

  18. ITU document ITU-R P.1407-1, Multipath Propagation and Parameterization of its Characteristics (1999-2003)

    Google Scholar 

  19. Bello, P.: Characterization of Random Time-Variant Linear Channels. IEEE Trans. Comm. 11, 360–393 (1963)

    Article  Google Scholar 

  20. Molisch, A.F., Steinbauer, M.: Condensed Parameters for Characterizing Wideband Mobile Radio Channels. Int. Journ. Wireless Information Networks 6(3), 133–154 (1999)

    Article  Google Scholar 

  21. Schumacher, H., Tchouankem, H., Nuckelt, J., Kuerner, T., Zinchenko, T., Leschke, A., Wolf, L.: Vehicle-to-Vehicle 802.11p Performance Measurements at Urban Intersections. In: Proc. IEEE ICC, Workshop on Intelligent Vehicular Networking, Ottawa, ON, CA, June 10-15 (2012)

    Google Scholar 

  22. Bernado, L., Roma, A., Paier, A., Zemen, T., Czink, N., Karedal, J., Thiel, A., Tufvesson, F., Molisch, A.F., Mecklenbrauker, C.F.: In-Tunnel Vehicular Radio Channel Characterization. In: Proc. IEEE Spring VTC, Budapest, Hungary, May 15-18 (2011)

    Google Scholar 

  23. Chen, S., Wyglinski, A.M., Pagadarai, S., Vuyyuru, R., Altintas, O.: Feasibility Analysis of Vehicular Dynamic Spectrum Access via Queueing Theory Model. IEEE Comm. Mag. 49(11), 156–163 (2011)

    Article  Google Scholar 

  24. Acosta-Marum, G., Ingram, M.A.: A BER-Based Partitioned Model for a 2.4 GHz Vehicle-to-Vehicle Expressway Channel. Wireless Pers. Comm. 37, 421–433 (2006)

    Article  Google Scholar 

  25. Konstantinou, K., Kang, S., Tzaras, C.: A Measurement Based Model for Mobile-to-Mobile UMTS Links. In: Proc. IEEE Veh. Tech. Conf., Singapore, May 11-14, pp. 529–533 (2008)

    Google Scholar 

  26. Standard Specification for Telecommunications and Information Exchange Between Roadside and Vehicle Systems—5 GHz Band Dedicated Short Range Communications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY) Specifications, ASTM e2213-03 (September 2003)

    Google Scholar 

  27. Uzcategui, R.A., Acosta-Marum, G.: WAVE: A Tutorial. IEEE Comm. Mag. 47(5), 126–133 (2009)

    Article  Google Scholar 

  28. Cheng, L., Henty, B.E., Cooper, R., Stancil, D.D.: A Measurement Study of Time-Scaled 802.11a Waveforms over the Mobile-to-Mobile Vehicular Channel at 5.9 GHz. IEEE Comm. Mag. 46(5), 84–91 (2008)

    Article  Google Scholar 

  29. Gallagher, B., Akatsuka, H.: Wireless Communications for Vehicle Safety: Radio Link Performance and Wireless Connectivity Methods. IEEE Veh. Tech. Mag. 1, 4–16 (2006)

    Article  Google Scholar 

  30. Schack, M., Kornek, D., Slottke, E., Kuerner, T.: Analysis of Channel Parameters for Different Antenna Configurations in Vehicular Environments. In: Proc. IEEE Fall Veh. Tech. Conf., Ottawa, ON, Canada, September 6-9 (2010)

    Google Scholar 

  31. Molisch, A.F., Tufvesson, F., Karedal, J., Mecklenbrauker, C.F.: A Survey on Vehicle-to-Vehicle Propagation Channels. IEEE Wireless Comm. Mag. (12), 12–22 (2009)

    Google Scholar 

  32. Wang, C.X., Cheng, X., Laurenson, D.I.: Vehicle-to-Vehicle Channel Modeling & Measurements: Recent Advances & Future Challenges. IEEE Comm. Mag. 47(11), 96–103 (2009)

    Article  Google Scholar 

  33. Matolak, D.W., Wu, Q.: Vehicle-To-Vehicle Channels: Are We Done Yet? In: Proc. Globecom 2009 Workshop on Networking Intelligent Vehicles and Infrastructures, Honolulu, HI, USA (December 4, 2009)

    Google Scholar 

  34. Matolak, D.W.: Radio Channel Modeling for Vehicle-to-Vehicle/Road Communications. In: Zhou, M.-T., Zhang, Y., Yang, L.T. (eds.) Wireless Technologies for Intelligent Transportation Systems, ch. 2. Nova Science Publishers (March 2010)

    Google Scholar 

  35. Matolak, D.W., Wu, Q.: Channel Models for V2V Communications: A Comparison of Different Approaches. In: Proc. European Conf. on Antennas & Propagation, Rome, Italy, April 11-15 (2011)

    Google Scholar 

  36. Boche, H., Bourdoux, A., Fonollosa, J.R., Kaiser, T., Molisch, A., Utschick, W.Q.: Smart Antennas: State of the Art. IEEE Vehicular Tech. Magazine 1(1), 8–17 (2006)

    Article  Google Scholar 

  37. Gesbert, D., Bolcskei, H., Gore, D.A., Paulraj, A.J.: Outdoor MIMO Wireless Channels: Models and Performance Prediction. IEEE Trans. Comm. 50(12), 1926–1934 (2002)

    Article  Google Scholar 

  38. Stuber, G.L.: Principles of Mobile Communication, 2nd edn. Kluwer Academic Pub., Boston (2001)

    Google Scholar 

  39. Renaudin, O., Kolmonen, V.-M., Vainikainen, P., Oestges, C.: Non-Stationary Narrowband MIMO Inter-Vehicle Channel Characterization in the 5 GHz Band. IEEE Trans. Veh. Tech. 59(4), 2007–2015 (2010)

    Article  Google Scholar 

  40. Matolak, D.W.: Channel Modeling for Vehicle-to-Vehicle Communications and Networking. In: Santos, R.A., Licea, V.R. (eds.) Wireless Technologies in Vehicular Ad Hoc Networks: Present and Future Challenges. IGI Global Publishing (2012)

    Google Scholar 

  41. Zheng, Y.R.: A Non-Isotropic Model for Mobile to Mobile Fading Channel Simulations. In: Proc. MILCOM 2006, Washington, DC (2006)

    Google Scholar 

  42. Cheng, L., Henty, B.E., Stancil, D.D., Bai, F., Mudalige, P.: Mobile Vehicle-to-Vehicle Narrow-band Channel Measurement and Characterization of the 5.9 GHz Dedicated Short Range Communication (DSRC) Frequency Band. IEEE Journ. Selected Areas Comm. 25(8), 1501–1516 (2007)

    Article  Google Scholar 

  43. Karedal, J., Czink, N., Paier, A., Tufvesson, F., Molisch, A.F.: Path Loss Modeling for Vehicle-to-Vehicle Communications. IEEE Trans. Veh. Tech. 60(1), 323–328 (2011)

    Article  Google Scholar 

  44. Perez Fontan, F., Espineira, P.M.: Modeling the Wireless Propagation Channel: a Simulation Approach with Matlab. John Wiley & Sons, West Sussex (2008)

    Book  Google Scholar 

  45. Tabatabaei, S.A.H., Fleury, M., Qadri, N.N., Ghanbari, M.: Improving Propagation Modeling in Urban Environments for Vehicular Ad Hoc Networks. IEEE Trans. Intelligent Transp. Sys. 12(3), 705–716 (2011)

    Article  Google Scholar 

  46. Ito, Y., Taga, T., Muramatsu, J., Suzuki, N.: Prediction of Line of Sight Propagation Loss in Inter-Vehicle Communication Environments. In: Proc. IEEE Int. Symp. Pers., Indoor, & Mobile Radio Comm., PIMRC, Athens, Greece, September 3-7 (2007)

    Google Scholar 

  47. Konstantinou, K., Kang, S., Tzaras, C.: A Measurement-Based Model for Mobile-to-Mobile UMTS Links. In: Proc. IEEE Spring Veh. Tech. Conf., Singapore, May 11-13 (2008)

    Google Scholar 

  48. Schack, M., Nuckelt, J., Geise, R., Thiele, L., Kuerner, T.: Comparison of Path Loss Measurements and Predictions at Urban Crossroads for C2C Communications. In: Proc. European Conf. on Antennas & Propagation, Rome, Italy, April 11-15 (2011)

    Google Scholar 

  49. Acosta-Marum, G., Ingram, M.A.: Six Time- and Frequency-Selective Empirical Channel Models for Vehicular Wireless LANs. IEEE Vehicular Technology Mag. 2(4), 4–11 (2007)

    Article  Google Scholar 

  50. Acosta-Marum, G., Ingram, M.A.: Doubly Selective Vehicle-to-Vehicle Channel Measurements and Modeling at 5.9 GHz. In: Proc. Int. Symp. Wireless Pers. Multimedia Comm., San Diego, CA, September 17-20 (2006)

    Google Scholar 

  51. Sen, I., Matolak, D.W.: Vehicle-Vehicle Channel Models for the 5 GHz Band. IEEE Trans. Intelligent Transp. Systems 9(2), 235–245 (2008)

    Article  Google Scholar 

  52. Matolak, D.W., Wu, Q., Sen, I.: 5 GHz Band Vehicle-to-Vehicle Channels: Models for Multiple Values of Channel Bandwidth. IEEE Trans. Vehicular Tech. 59(5), 2620–2625 (2010)

    Article  Google Scholar 

  53. Kunisch, J., Pamp, J.: Wideband Car-to-Car Radio Channel Measurements and Model at 5.9 GHz. In: Proc. IEEE Fall Veh. Tech. Conf., Calgary, AB, Canada, September 21-24 (2008)

    Google Scholar 

  54. Renaudin, O., Kolmonen, V.-M., Vainikainen, P., Oestges, C.: Wideband Measurement-Based Modeling of Inter-Vehicle Channels in the 5 GHz Band. In: Proc. European Conf. on Antennas & Propagation, Rome, Italy, April 11-15 (2011)

    Google Scholar 

  55. Paier, A., Karedal, J., Czink, N., Dumard, C., Zemen, T., Tufvesson, F., Mecklenbrauker, C.F.: Comparison of Lund 2007 Vehicular Channel Measurements with the IEEE 802.11p Model. COST 2100 TD(08) 436, Wroclaw, Poland, February 6-8 (2008)

    Google Scholar 

  56. Paschalidis, P., Wisotzki, M., Kortke, A., Peter, M., Keusgen, W.: Wideband Car-to-Car MIMO Radio Channel Measurements at 5.7 GHz and Issues Concerning Application-Oriented Systems. In: Proc. 1st IEEE Veh. Tech. Society Wireless Access in Veh. Env (WAVE) Conf., Dearborn, MI, December 8-9 (2008)

    Google Scholar 

  57. Renaudin, O., Kolmonen, V.-M., Vainikainen, P., Oestges, C.: Wideband MIMO Car-to-Car Radio Channel Measurements at 5.3 GHz. In: Proc. IEEE Fall Veh. Tech. Conf., Calgary, AB, Canada, September 21-24 (2008)

    Google Scholar 

  58. Boban, M., Vinhoza, T.T.V., Ferreira, M., Barros, J., Tonguz, O.K.: Impact of Vehicles as Obstacles in Vehicular Ad Hoc Networks. IEEE Journ. Sel. Areas Comm. 29(1), 15–28 (2011)

    Article  Google Scholar 

  59. Patel, C.S., Stuber, G.L., Pratt, T.G.: Simulation of Rayleigh-Faded Mobile-to-Mobile Communication Channels. IEEE Trans. Comm. 53(11), 1876–1884 (2005)

    Article  Google Scholar 

  60. Zajic, A.G., Stuber, G.L.: Three-Dimensional Modeling, Simulation, and Capacity Analysis of Space-Time Correlated Mobile-to-Mobile Channels. IEEE Trans. Veh. Tech. 57(4), 2042–2054 (2008)

    Article  Google Scholar 

  61. Patzold, M., Hogstad, B.O., Youssef, N.: Modeling, Analysis, and Simulation of MIMO Mobile-to-Mobile Fading Channels. IEEE Trans. Wireless Comm. 7(2), 510–520 (2008)

    Article  Google Scholar 

  62. Zajic, A.G., Stuber, G.L., Pratt, T.G., Nguyen, S.: Wideband MIMO Mobile-to-Mobile Channels: Geometry-based Statistical Modeling with Experimental Verification. IEEE Trans. Veh. Tech. 58(2), 517–534 (2009)

    Article  Google Scholar 

  63. Cheng, X., Wang, C.-X., Laurenson, D.I., Salous, S., Vasilakos, A.V.: An Adaptive Geometry-Based Stochastic Model for Non-Isotropic MIMO Mobile-to-Mobile Channels. IEEE Trans. Wireless Comm. 8(9), 4824–4835 (2009)

    Article  Google Scholar 

  64. Czink, N., Kaltenberger, F., Zhou, Y., Bernado, L., Zemen, T., Yin, X.: Low-Complexity Geometry-Based Modeling of Diffuse Scattering. In: Proc. European Conf. on Antennas & Propagation, Barcelona, Spain, April 12-16 (2010)

    Google Scholar 

  65. Chelli, A., Patzold, M.: A Non-Stationary MIMO Vehicle-to-Vehicle Channel Model Derived from the Geometrical Street Model. In: Proc. IEEE Fall Veh. Tech. Conf., September 5-8 (2011)

    Google Scholar 

  66. Yoo, S., Lee, J., Kim, K.: Modeling and Characteristics of Mobile-to-Mobile Wideband MIMO Channel Based on the Geometrical Multi-Radii Two-Rings with Specified Frequency Selectivity. In: Proc. European Conf. on Antennas & Propagation, Prague, Czech Republic, March 26-30 (2012)

    Google Scholar 

  67. Karedal, J., Tufvesson, F., Czink, N., Paier, A., Dumard, C., Zemen, T., Mecklenbrauker, C.F., Molisch, A.F.: A Geometry-Based Stochastic MIMO Model for Vehicle-to-Vehicle Communications. IEEE Trans. Wireless Comm. 8(7), 3646–3657 (2009)

    Article  Google Scholar 

  68. Maurer, J., Fugen, T., Schafer, T., Wiesbeck, W.: A New Inter-Vehicle Communications (IVC) Channel Model. In: Proc. IEEE Veh. Tech. Conf., vol. 1, pp. 9–13 (September 2004)

    Google Scholar 

  69. Maurer, J., Schafer, T.M., Wiesbeck, W.: A Realistic Description of the Environment for Inter-Vehicle Wave Propagation Modeling. In: Proc. IEEE Vehicular Tech. Conf., Atlantic City, NJ, October 7-11, pp. 1437–1441 (2001)

    Google Scholar 

  70. Maurer, J., Schafer, T.M., Wiesbeck, W.: Physical Layer Simulations of IEEE 802.11a for Vehicle-Vehicle Communications. In: Proc. IEEE Vehicular Tech. Conf., Dallas, TX, September 25-28 (2005)

    Google Scholar 

  71. Paschalidis, P., Mahler, K., Kortke, A., Wisotzki, M., Peter, M., Keusgen, W.: 2 X 2 MIMO Measurements of the Wideband Car-to-Car Channel at 5.7 GHz on Urban Street Intersections. In: Proc. IEEE Fall VTC, San Francisco, CA, September 5-8 (2011)

    Google Scholar 

  72. Ohlmer, E., Fettweis, G., Plettemeier, D.: MIMO System Design and Field Tests for Terminals with Confined Space—Impact on Automotive Communication. In: Proc. European Conf. on Antennas & Propagation, Rome, Italy, April 11-15 (2011)

    Google Scholar 

  73. Nuckelt, J., Kuerner, T.: MRC Performance Benefit in V2V Communication Systems in Urban Traffic Scenarios. In: Proc. European Conf. on Antennas & Propagation, Prague, Czech Republic, March 26-30 (2012)

    Google Scholar 

  74. Wang, B., Sen, I., Matolak, D.W.: Performance Evaluation of 802.16e in Vehicle to Vehicle Channels. In: Proc. IEEE Fall VTC, Baltimore, MD, October 1-3 (2007)

    Google Scholar 

  75. Calcev, G., et al.: A Wideband Spatial Channel Model for System-Wide Simulations. IEEE Trans. Veh. Tech. 56, 389–403 (2007)

    Article  Google Scholar 

  76. WINNER II interim channel models, D1.1.1VI.1, world wide website (February 2013), https://www.ist-winner.org/WINNER2-Deliverables/D1.1.1.pdf

  77. Matolak, D.W., Wu, Q.: Markov Models for Vehicle-to-Vehicle Channel Multipath Persistence Processes. In: Proc. 1st IEEE Veh. Tech. Society Wireless Access in Veh. Env. (WAVE) Conf., Dearborn, MI, December 8-9 (2008)

    Google Scholar 

  78. Cohen, L.: Time-Frequency Analysis. Prentice-Hall, Upper Saddle River (1995)

    Google Scholar 

  79. Matz, G.: On Non-WSSUS Wireless Fading Channels. IEEE Trans. Wireless Comm. 4(5), 2465–2478 (2005)

    Article  MathSciNet  Google Scholar 

  80. Bernado, L., Zemen, T., Paier, A., Karedal, J., Fleury, B.H.: Parameterization of the Local Scattering Function Estimator for Vehicular-to Vehicular Channels. In: Proc. IEEE Fall Veh. Tech. Conf., Anchorage, AK, September 20-23 (2009)

    Google Scholar 

  81. Paschalidis, P., Mahler, K., Kortke, A., Peter, M., Keusgen, W.: Statistical Evaluation of Multipath Component Lifetime in the Car-to-Car Channel at Urban Street Intersections Based on Geometrical Tracking. In: Proc. IEEE Spring Veh. Tech. Conf., Yokohama, Japan, May 6-9 (2012)

    Google Scholar 

  82. Paier, A., Zemen, T., Bernado, L., Matz, G., Karedal, J., Czink, N., Dumard, C., Tufvesson, F., Molisch, A.F., Mecklenbrauker, C.F.: Non-WSSUS Channel Characterization in Highway and Urban Scenarios at 5.2 GHz Using the Local Scattering Function. In: Proc. Int. Workshop on Smart Antennas, Helsinki, Finland, February 26-27 (2008)

    Google Scholar 

  83. Molisch, A.F., Asplund, H., Heddergott, R., Steinbauer, M., Zwick, T.: The COST259 Directional Channel Model—Part I: Overview and Methodology. IEEE Trans. Wireless Comm. 5(12), 3421–3433 (2006)

    Article  Google Scholar 

  84. Asplund, H., Glazunov, A.A., Molisch, A.F., Pedersen, K.I., Steinbauer, M.: The COST259 Directional Channel Model—Part II: Macrocells. IEEE Trans. Wireless Comm. 5(12), 3434–3450 (2006)

    Article  Google Scholar 

  85. Lee, J.-Y.: UWB Channel Modeling in Roadway and Indoor Parking Environments. IEEE Tran. Vehicular Tech. 59(7), 3171–3180 (2010)

    Article  Google Scholar 

  86. Phaiboon, S.: Propagation Path Loss Models for Parking Buildings. In: 5th Int. Conf. on Information, Communications and Signal Processing, Bangkok, Thailand, pp. 1348–1351 (2005)

    Google Scholar 

  87. Okamoto, H., Kitao, K., Ichitsubo, S.: Outdoor-to-Indoor Propagation Loss Prediction in 800-MHz to 8-GHz Band for an Urban Area. IEEE Trans. Vehicular Tech. 58(3), 1059–1067 (2009)

    Article  Google Scholar 

  88. Matolak, D.W., Sun, R., Liu, P.: Parking Garage Channel Characteristics at 5 GHz for V2V Applications. In: IEEE Fall Veh. Tech. Conf. (February 2013) (submitted)

    Google Scholar 

  89. Okumura, Y., Ohmori, E., Kawano, T., Fukuda, K.: Field strength and its variability in VHF and UHF land mobile radio service. Rev. Electr. Communications Lab. 16, 825–873 (1968)

    Google Scholar 

  90. Liu, P., Matolak, D.W., Ai, B., Sun, R.: Path Loss Modeling for Communication on a Slope. IEEE Trans. Veh. Tech. (March 2013) (submitted)

    Google Scholar 

  91. Ohira, T., Hirai, T., Tomisato, S., Hata, M.: A Study of Mobile Path Loss Estimation Models for a Sloping Terrain Area in Cellular Systems. In: Asia Pacific Conf. on Communications, Jeju Island, Korea, October 15-17 (2012)

    Google Scholar 

  92. Alexander, P., Haley, D., Grant, A.: Cooperative Intelligent Transport Systems: 5.9 GHz Field Trials. Proc. IEEE 99(7), 1215–1235 (2011)

    Article  Google Scholar 

  93. Fernandez, J.A., Borries, K., Cheng, L., Vijaya Kumar, B.V.K., Stancil, D.D., Bai, F.: Performance of the 802.11p Physical Layer in Vehicle-to-Vehicle Environments. IEEE Trans. Veh. Tech. 61(1), 3–14 (2012)

    Article  Google Scholar 

  94. Vinel, A.: 3GPP LTE Versus IEEE 802.11p/WAVE: Which Technology is Able to Support Cooperative Vehicular Safety Applications. IEEE Wireless Comm. Letters 1(2), 125–128 (2012)

    Article  Google Scholar 

  95. Dressler, F., Kargl, F., Ott, J., Tonguz, O.K., Wischhof, L.: Research Challenges in Intervehicular Communications: Lessons of the 2010 Dagstuhl Seminar. IEEE Comm. Mag. 49(5), 158–164 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matolak, D.W. (2013). V2V Communication Channels: State of Knowledge, New Results, and What’s Next. In: Berbineau, M., et al. Communication Technologies for Vehicles. Nets4Cars/Nets4Trains 2013. Lecture Notes in Computer Science, vol 7865. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37974-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37974-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37973-4

  • Online ISBN: 978-3-642-37974-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics