Skip to main content

Network-Aware Multiway Join for MapReduce

  • Conference paper
Grid and Pervasive Computing (GPC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7861))

Included in the following conference series:

Abstract

MapReduce is an effective tool for processing large amounts of data in parallel using a cluster of processors or computers. One common data processing task is the join operation, which combines two or more datasets based on values common to each. In this paper, we present a network aware multi-way join for MapReduce(NAMM) that improves performance by redistributing the workload amongst reducers. NAMM achieves this by redistributing tuples directly between reducers with an intelligent network aware algorithm. We show that our presented technique has significant potential to minimize the time required to join multiple datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51, 107–113 (2008)

    Article  Google Scholar 

  2. Hoefler, T., Lumsdaine, A., Dongarra, J.: Towards Efficient MapReduce Using MPI. In: Ropo, M., Westerholm, J., Dongarra, J. (eds.) PVM/MPI. LNCS, vol. 5759, pp. 240–249. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. White, T.: Hadoop the definitive guide, 2nd edn. O’Reilly, Sebastopol (2010)

    Google Scholar 

  4. Afrati, F.N., Ullman, J.D.: Optimizing Multiway Joins in a Map-Reduce Environment. IEEE Transactions on Knowledge and Data Engineering 23, 1282–1298 (2011)

    Article  Google Scholar 

  5. Lynden, S., Tanimura, Y., Kojima, I., Matono, A.: Dynamic Data Redistribution for MapReduce Joins. In: 2011 IEEE Third International Conference on Cloud Computing Technology and Science (CloudCom), pp. 717–723 (2011)

    Google Scholar 

  6. Chandar, J.: Join Algorithms using Map/Reduce, Master of Science, School of Informatics, University of Edinburgh (2010)

    Google Scholar 

  7. Wang, X., Burns, R., Terzis, A., Deshpande, A.: Network-aware join processing in global-scale database federations. In: IEEE 24th International Conference on Data Engineering, ICDE 2008, pp. 586–595 (2008)

    Google Scholar 

  8. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: ZooKeeper: Wait-free coordination for Internet-scale systems. In: USENIX ATC (2010)

    Google Scholar 

  9. Palla, K.: A Comparative Analysis of Join Algorithms Using the Hadoop Map/Reduce Framework, Master of Science, School of Informatics, University of Edinburgh (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Slagter, K., Hsu, CH., Chung, YC., Park, J.H. (2013). Network-Aware Multiway Join for MapReduce. In: Park, J.J.(.H., Arabnia, H.R., Kim, C., Shi, W., Gil, JM. (eds) Grid and Pervasive Computing. GPC 2013. Lecture Notes in Computer Science, vol 7861. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38027-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38027-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38026-6

  • Online ISBN: 978-3-642-38027-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics