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Setúbal School of Technology, Polytechnical Institute ofSetúbal, Setúbal, Portugal
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Abstract. Supply chains are large-scale distribution networks in which multiple
types of commodities are present. In this paper, the operations management in
supply chains is posed as a tracking control problem. All inventory levels in the
network should be kept as close as possible to the desired values over time. The
supply chain state is disturbed due to client demand at the end nodes. A multi-
agent control architecture to restore all inventory levelsover the supply chain
is proposed. First the model for the supply chain is broken down into smaller
subsystems using a flow decomposition. The operations management for each
subsystem will be decided upon by a dedicated control agent.The control agents
solve their problems using a pull-flow perspective, starting at the end nodes and
then propagating upstream. Adding new components to the supply chain will
have as a consequence the inclusion of more control agents. The proposed archi-
tecture is easily scalable to large supply chains due to its modular feature. The
multi-agent control architecture performance is illustrated using a supply chain
composed of four levels (suppliers, consolidation, distribution, end nodes) using
different levels of predictions about client demands. Withthe increase of predic-
tion demand accuracy the proposed control architecture is able to keep the desired
inventory level at the end nodes over time, which makes it suitable for use for just
in time production strategies.

Keywords: supply chains, multi-agent systems, model predictive control, inven-
tory level
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1 Introduction

Supply chain are complex systems in which multiple organizations (suppliers, manufac-
turers, retailers, and customers) are contributing to movecommodities or services from
a source node to a destination node [1]. The strong coupling between organizations re-
stricts achieving optimal performance of the whole system.Currently, the increase of
production far from the final customer poses a challenge to the existing supply chains.
The problem is growing in complexity and new methodologies are required to support
decisions leading to a more effective cooperation between organizations. This coopera-
tion depends on the type of supply chain in terms of freedom toexchange information.
In a vertical integration all organizations are owned by thesame company and therefore
the information can be shared freely. In horizontal integration different organizations
are owned by different companies with possibly conflicting objectives and competitive
issues, making the exchange information more restricted.

In this paper we consider client demand as an exogenous inputat the end nodes that
disturbs the supply chain state: inventory levels. Operations management is required
to assign flows between nodes such that the client demand is satisfied while keeping
the inventory at a desired level. This paper proposes a multi-agent control architec-
ture to keep the desired inventory levels over the supply chain. As supply chains may
be large-scale systems we propose a flow decomposition [2] toobtain smaller subsys-
tems. A control agent is assigned to each subsystem and is responsible for determining
decisions (flows assignment) over time. The control agent will solve an optimization
problem at each time step in accordance to the Model Predictive Control (MPC) strat-
egy. MPC has shown successful applications in the process industry [3], and is now
gaining increasing attention in fields like supply chains [4], power networks [5], water
distribution networks [6] and road traffic networks [7]. In supply chains, costs can be
associated to flows and quantities of stored commodities. Using mathematical models
to describe the flows inside supply chains it is possible to make predictions about the
future behavior of the supply chain. The MPC controller can determine which actions
have to be chosen in order to obtain the best performance. At each time step the con-
troller first obtains the current state of the system it controls. Then it formulates an
optimization problem, using the desired goals, existing constraints, disturbances and
prediction information if available. The possibility to include prediction information in
the optimization problem motivates the selection of this control strategy. Through this
mechanism the different control agents can exchange information about their current
and future decisions increasing their cooperation by avoiding multiple agents to answer
to the same client demand. The order by which the control agents solve their problems
is a so-called pull-flow perspective, starting from the end nodes, where the exogenous
input is applied, and propagated towards the source nodes.

This paper is organized as follows. In Section 2 the model used for describing the
multi-commodity flows in supply chains is given. The operations management prob-
lem is formulated in Section 3 and addressed using a multi-agent MPC architecture
where each control agent solves an optimization problem at each discrete time step.
The performance of the proposed architecture is tested through numerical experiments
in Section 4 for a hypothetical supply chain taking into account different prediction
accuracies. In Section 5 conclusions are drawn and future research topics are indicated.
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Fig. 1. Components in a supply chain to model the storage and transport phenomena (deg(i)
stands for nodei degree).

2 Modeling Supply Chains

A supply chain is a network and can be described as a graphG = (V , E) [8], where the
nodesV are related to physical locations and the arcsE represent the available trans-
port between nodes. At a macroscopic level, i.e., from a management perspective, sup-
ply chains exhibits two major phenomena: storage ability inwell defined areas where
commodities can be produced, manufactured or simply stored, and the transport delay
(which is the time necessary to transport commodities between two nodes using the
available transport). The storage ability is related to theso-called center nodes that can
have multiple arriving and departing connections (see Fig.1(a)). The transport delay
for each connection is modeled as a succession of nodes with limited storage capacity
(related to the transport capacity) between two center nodes (see Fig. 1(b)). Each con-
nection has one upstream center node from where it pulls commodities, and it also has
one downstream center node to where it pushes commodities. Connections can share
the limited transport capacity to guarantee the desired flows between nodes. Supply
chains are therefore complex systems with coupled dynamicsand coupled constraints.

The complexity of the supply chain model is determined by:

– nt: number of commodity types considered;
– nc: number of connections existing in the supply chain;
– nci : number of nodes belonging exclusively to connectioni;
– nn: number of center nodes in the supply chain that are further divided into source

(upstream) nodesnu
n, end (downstream) nodesnd

n and store nodesns
n;

– nl: number of levels present in the supply chain, including thesource (upstream)
and end node (downstream) levels.

For illustration purposes consider the supply chain represented in Fig. 2. The supply
chain is divided into four levelsnl = 4 (source, consolidation center, distribution center
and end node levels) with a total ofnn = 11 center nodes connected through a total of
nc = 17 connections. The supply chain transportsnt = 3 commodities (products A, B
and C) generated at dedicated sources. As particular features the supply chain presents
(1) the possibility to transport commodities between the distribution centers, (2) there
are some end nodes that can be served by more than one connection and (3) available
connections have different transport delays.
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Fig. 2. Example of supply chain with three commodities, products A,B and C. For the sake of
readability the61 connection nodes are omitted.

2.1 Proposed Centralized Dynamical Model

The supply chain is seen as a network of storage areas described as queues that are con-
nected by transport capacity represented by links. The proposed supply chain model for
describing the supply chain dynamics is based on a flow perspective. The total number
of nodes inside the supply chainny is associated with the network topology,

ny = nn +

nc
∑

i=1

nci . (1)

For each node in the supply chain a state-space vectorx̄j(k) is defined; the individual
state-space vectors of the nodes are merged to form the state-space vectorx(k) of the
complete supply chain,

x̄j(k) =











x1
j (k)

x2
j (k)
...

xnt

j (k)











, j = 1, . . . , ny, x(k) =











x̄1(k)
x̄2(k)

...
x̄ny

(k)











, (2)

wherext
j(k) is the quantity per commodity typet at nodej at time stepk. The dimen-

sion of the state-space vectorx(k) is given byntny. The model for the supply chain
dynamics can now be represented in a compact form as

x(k + 1) = Ax(k) +Buu(k) +Bdd(k), (3)

y(k) = Cx(k), (4)

x(k) ≥ 0, (5)

u(k) ≥ 0, (6)

y(k) ≤ ymax, (7)

Puuu(k) ≤ umax, (8)

x(k) ≥ Pxuu(k), (9)
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whereu is the control action vector with lengthnu = nt(ny − nn + nc) representing
the flows between nodes,d is the exogenous input vector related to the downstream
demand over time with dimensionntn

d
n, y is the current volume per commodity type at

all nodes with dimensionny, ymax are the maximum node storage capacities,umax the
maximum transport capacities according to the supply chaindesign,A, Bu, Bd andC
are the state-space matrices,Pxu is the projection from the control action setU into the
state-space setX andPuu is the projection matrix from the control action setU into the
maximum transport capacity setUmax. The supply chain state,x, at the next time step,
k+1, is determined using (3) as a function of the current supply chain state,x(k), plus
the control action contribution,u, decided upon by the supply chain manager, and the
corresponding exogenous inputs,d, capturing the client demand. The control actionu

is the flow per commodity type between nodes and is imposed through a corresponding
transport capacity allocation. Inequalities (5)–(9) are necessary in this framework for
imposing the supply chain structural layout and assumptions made:

Nonnegativity of States and Flows:negative storage is not physically possible, im-
posed by (5), and all flows are assumed to be nonnegative, thisis guaranteed by (6);

Storage Capacity: each node has to respect its own storage capacity and this is repre-
sented by (7);

Maximum Transport Capacity: the supply chain structural layout in terms of trans-
port capacity is represented by (8);

Feasible Flows: not all flows that satisfy (5) and (6) are allowed. The assigned flow
has to respect the quantity per commodity type available in the related node and
therefore equation (9) constraints this relation.

2.2 Supply Chain Decomposition

Real supply chains may consist of tens of center nodes and handle hundreds of com-
modity types. It is critical to alleviate the computationalburden introduced when con-
sidering the central model (3)–(9) such that a solution is reached in admissible time.
Using a node/arc numbering in a push-flow perspective (from the sources towards the
end nodes) it is possible to obtain a highly structured state-space model without the
need to further mathematical manipulations [9]. Although the network is composed of
several center nodes it is important to note that a connection is by definition the path be-
tween two center nodes. Therefore the interference of a single connection into the set of
center nodes is done solely at two nodes. A subsystemi is defined as the node collection
related to a connectioni plus the associated source and end nodes [2]. The state-space
vectorxi for subsystemi will be composed of the correspondingx̄j state-space vectors,

xi(k) =
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=

i
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ncj
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, 1 ≤ i ≤ nc, (10)
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with lengthnt (nci + 2) belonging to state-space setXi wherex̄in
i and x̄out

i are the
state-space vectors related to the source and end nodes for connectioni respectively.
The state-space model for subsystemi is given by,

xi(k + 1) = Aixi(k) +Bui
ui(k) +Bdi

di(k) +

nc
∑

j=1,j 6=i

Bui,j
uj(k) (11)

yi(k) = Cixi(k), (12)

whereyi is the total quantity of commodities at subsystemi nodes,ui is the control
action for subsystemi with lengthnt (nci + 1) belonging to setUi, di is the exogenous
input vector associated with subsystemi, Ai, Bui

, Bui,j
Bdi

andCi are the state-
space matrices for subsystemi. The last term in (11) is responsible for the information
exchange between control agents, in particular regarding their future behavior, to avoid
that two or more control agents respond to the same demand. The complete subsystem
i model is obtained including constraints of nonnegativity of states and flows, storage
capacity, maximum transport capacity, and feasible flows tothe state space (11)–(12).

3 Supply Chain Operations Management

To limit the problem dimension to be solved at each time step,a control agent is as-
signed to each subsystem obtained from the supply chain using the flow decomposition
of the previous section. This approach leads to a scalable and modular control archi-
tecture. Adding new connections and nodes has as consequence the inclusion of more
control agents. In order to assure the cooperation between the different control agents
it is critical to assure or promote information exchange between control agents regard-
ing their current and predicted future decisions to avoid multiple agents to answer to
the same client demand. Control agents solve their problems, one after another, using
the information of the previous control agent but no communication iterations are per-
formed between control agents [10].

3.1 MPC Formulation For One Control Agent

Control agenti will solve the operations management for subsystemi following an
MPC strategy. MPC is an online optimization-based control approach that minimizes
an objective function subject to constraints at each time step.

The solution to the optimization problem is an optimal sequence of control actions
over the prediction horizon that give the best predicted performance. The controller
implements only the component corresponding to the first time step until the beginning
of the next time step, in a receding horizon fashion. At the next time step the MPC
controller searches for the solution of a new optimization problem, i.e., by obtaining
new information about the current state, available prediction information, and goals.

The cost function of a control agent is defined in accordance to the application field
and it is generally a function of the subsystem states and control actions that the agent
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controls over the prediction horizonNp,

Ji (x̃k,i, ũk,i, x̃ref,i) =

Np−1
∑

l=0

f (xi(k + 1 + l),ui(k + l),xref,i(k)) , (13)

where x̃k,i is the vector composed of the state-space vectors for each time step

over the prediction horizon
[

xT
i (k + 1) , . . . , xT

i (k +Np)
]T

, ũk,i is the vector com-
posed of the control action vectors for each time step over the prediction horizon
[

uT
i (k) , . . . , u

T
i (k +Np − 1)

]T
, xref,i is the desired inventory level vector,̃xref,i

is the vector composed of the desired inventory level vectors for each time step over

the prediction horizon
[

xT
ref,i(k) , . . . , x

T
ref,i(k +Np − 1)

]T
for control agenti. The

MPC formulation for control agenti can be stated as:

min
ũk,i

Ji (x̃k,i, ũk,i, x̃ref,i) (14)

subject to xi(k + 1 + l) = Aixi(k + l) +Bui
ui(k + l) +Bdi

di(k + l) + . . .

. . .+

nc∑

j=1,j 6=i

Bui,j
uj(k + l), (15)

yi(k) = Cixi(k), (16)

xi(k + 1 + l) ≥ 0, (17)

ui(k + l) ≥ 0, (18)

yi(k + l) ≤ ymax,i, (19)

Puu,iui(k + l) ≤ umax,i, (20)

xi(k + l) ≥ Pxu,iui(k + l), (21)

whereymax,i is the maximum capacity for the nodes of control agenti, umax,i repre-
sents the available transport resources according to the network’s structural layout for
control agenti, Puu,i is the projection matrix from the control action setUi into the
transport resource set for control agenti, Pxu,i is the projection from the control action
setUi into the state-space setXi.

3.2 Multi-Agent Control Architecture

The order in which the control agents solve their problems ateach time step can be
fixed over time or depend on the current supply chain state andpredictions. For the
sake of simplicity we consider that the ordero(k) =

[

o1 . . . onc

]

, with 1 ≤ oi ≤ nc,
by which the control agents solve their problems is fixed overtime and is a supply chain
configuration parameter set before the beginning of operations management. The order
of control agents is set following a pull-flow perspective: first the control agents related
to the end nodes solve their problems to keep the desired inventory levels. This will pull
commodities from the distribution center level. Then the control agents related to the
distribution centers solve their problems, pulling commodities from the consolidation
level and so on, until the control agents that pull commodities from the source nodes.

The starting control agent is responsible for setting the total amount of transport
capacity that is availableθ0 = umax for the current time step and the current prediction
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Fig. 3. Multi-agent control architecture schematics at a time step.

for future decisions setP0 = {ũk−1,o1 , . . . , ũk−1,onc
}. After the initial configuration

iterations are executed. The starting control agent(o1) has all transport capacity avail-
able. Each control agentoi (i = 1, . . . , nc), one after another, performs the following
steps at an iteration (see Fig. 3):

– the maximum admissible transport capacity for control agent oi is determined as
the minimum between the subsystem maximum transport capacity umax,oi and the
transport capacity not yet assigned,

umax,oi = min (Pmax,oiθ
oi−1 ;umax,oi) , (22)

wherePmax,oi is the projection matrix from the global transport capacitysetUmax

to the maximum transport capacity setUmax,oi for subsystemoi;
– the optimal control actionuopt,oi is the first time step component of the control

agent optimal sequence over the prediction horizonũopt,oi found solving the MPC
problem (14)–(21) for control agenti;

– the available transport capacity to the next control agentoi+1 is updated:

θoi+1 = θoi −Pmu,oi(k)uopt,oi(k), (23)

wherePmu,oi(k) is the projection matrix from control agentoi handling resource
setUoi to the control action setUmax;

– the predictions for future decisions are updated and denoted byPoi+1 replacing the
control agent initial predictioñuk−1,oi by the new optimal sequence foundũopt,oi .

4 Simulation Experiments

The proposed architecture is applied to the supply chain presented in Fig. 2. We focus
on addressing the supply chain operations management as a flow assignment problem
using the multi-agent architecture presented in Section 3.The structural design of the
supply chain is out of the scope of this paper. For the sake of clarity we consider constant
inventory levels over time. The performance obtained with the multi-agent architecture
will be evaluated for three different configurations concerning the prediction accuracy
available to the control agents: exact prediction (Test A),constant prediction (Test B)
and no prediction (Test C).
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Parameters c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17
Transport [hours] 14 8 8 8 14 8 8 6 8 12 10 8 8 10 12 8 6

Source node 62 62 63 64 64 65 65 66 66 66 66 66 67 67 67 67 67
End node 65 65 65 65 65 66 67 68 69 70 71 67 66 69 70 71 72

Nodes (nci ) 6 3 3 3 6 3 3 2 3 5 4 3 3 4 5 3 2
Flows 7 4 4 4 7 4 4 3 4 6 5 4 4 5 6 4 3

Transport cost 1 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5
Transport capacity260 100 100 100 260 80 80 30 30 30 30 10 10 30 30 30 30

Table 1.Connection details for the considered supply chain.

Commodity end node68 end node69 end node70 end node71 end node72

A 7.0 9.8 12.6 9.8 7.0
B 8.4 8.4 11.2 1.2 5.6
C 5.6 7.0 9.8 8.4 4.2

Total 15 18 24 21 12

Table 2.Supply chain average demand for end nodes (quantity per timestep).

4.1 Setup

The supply chain monitoring and management decision updateis done every2 hours.
All supply chain nodes work on a24 hour daily basis. The end nodes are opened to
clients from 8 am to 10 pm. The first disturbance will be available at 10 am translating
the consumption per commodity type between 8 am and 10 am. Thesupply chain can
be delivering commodities to supermarkets or raw materialsto industries for example.

Using 2 hours as time step size, the transport delay per connection is translated
into the required number of nodes to capture this phenomena (see Table 1). The supply
chain model has61 nodes to capture the transport delay for all connections: transport
delays are assumed fixed. For end nodes69, 70, and71 commodities can be delivered
from both distribution centers using amaster connection (less transport time) or aslave
connection (higher transport time). The supply chain demand is created as a random
demand per time step for all commodities at the five end nodes (center nodes68 to 72,
for average values see Table 2). The inventory levels are setto support the associated
average demand during two, three and two complete days for the end nodes, distribution
centers, and consolidation center respectively. To increase the demand challenge applied
to the supply chain two demand peaks are set: one at the fourthday (a factor of1.5) and
one at the eight day (a factor of2).

Control agenti is assigned to connectioni. All control agents solve the MPC prob-
lem using a prediction horizon of7 steps corresponding to the biggest connection trans-
port delay at the supply chain. As a cost function a linear penalty for deviations from
the desired inventory level and transport costs is used. Thestate weights for the ob-
jective function are set in a pull perspective; in that sensethe benefit for staying at a
downstream node has to be bigger than the benefit staying at anupstream node. The
order by which the control agents solve their problems is thefollowing: c15, c10, c16,
c11, c9, c14, c17, c8, c6, c13, c7, c12, c1, c2, c3, c5 andc4. When multiple connections
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Fig. 4. Inventory levels for exact demand prediction (test A).

arrive at the same center node priority was given to the closest or to the cheapest con-
nection. The multi-agent architecture is solved at each time step of the simulation using
the MPT v2.6.3 toolbox [11] with the CDD Criss–Cross solver for linear programming
problems. The simulations are performed using MatLab R2009b on a personal com-
puter with a processor Intel(R) Core(TM) i7 at 1.60 GHz with 8 GB RAM memory in
a64-bit Operating System.

4.2 Results Analysis

The computational burden can be associated to the control action matricesBu andBui
.

Using the proposed decomposition it is possible to reduce the matrix dimension from
50544 elements to2736, this is a reduction of94.4%. Naturally the ratio of nonzero
elements grows from0.009 to 0.171. For test A, the average computation time for each
time step was27.04 s, with a maximum time of40.8 s and a minimum time of17.1 s.

Increasing the accuracy of the available demand predictionthe multi-agent archi-
tecture is able to keep the desired inventory levels at the end nodes, see Fig. 4(b). The
architecture uses the available prediction to anticipate future events and start to move
commodities in advance. Although the inventory level at theend nodes remain constant
the other nodes face variation in their inventory levels (see Fig. 4(a)). With an accuracy
decrease on the demand prediction the control agents do not have the necessary infor-
mation to anticipate correctly the future demand. As a consequence the inventory levels
at the end nodes start to face bigger oscillations and can runout of stock (see Fig. 5).
As is to be expected, the average deviation from the initial inventory level is smaller for
control agents that use exact demand prediction and is bigger for the case of no demand
prediction (see Table 3). Due to the supply chain structuraldesign all demand predic-
tions show significant deviation at end node68. The exact demand prediction concen-
trates all deviation in commodityC. End node70 has the worst indicators among the
exact demand prediction which is justified by the higher demand and transport delay
from the distribution centers associated.

Fig. 6 shows the state evolution for connection10 which is theslave connection for
node71. Commodities are only dispatched from the connection source node if they are
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Fig. 5. Inventory levels at end node70.

Deviation end node68 end node69 end node70 end node71 end node72

maxA 0.0/9.5/39.5 0/26.8/68.0 12.5/34.3/126.0 0.0/39.0/67.5 0.0/5.3/34.7
maxB 0.0/31.7/73.6 0/12.1/84.0 11.8/18.0/112.0 0.0/28.6/112.0 0.0/6.2/30.2
maxC 46.0/17.1/33.6 0/14.8/62.1 8.3/23.4/98.0 0.0/25.0/78.0 2.1/4.3/21.7

meanA 0.0/2.2/11.8 0.0/3.6/22.4 0.1/7.4/43.5 0.0/4.2/22.4 0.0/1.8/11.5
meanB 0.0/2.8/15.5 0.0/3.3/21.0 0.2/6.5/37.1 0.0/4.1/27.3 0.0/1.5/9.2
meanC 1.5/1.9/9.7 0.0/2.8/16.1 0.1/5.8/32.3 0.0/3.6/21.4 0.0/1.2/7.0

Table 3. Inventory analysis for the entire simulation time (exact/close/none demand prediction),
bold values stands for out of stock.
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Fig. 6.Quantity of commodities at first and last nodes for connection 10 (full line: xi,1, dash-dot
line: xi,nci

).

guaranteed to be accepted at the connection end node. There is no waiting queue at the
connection. Decreasing the accuracy in demand prediction makes the slave connection
to transports a lower volume of commodities leading to the decrease of inventory levels
at the end node. For exact prediction, commodities are delivered at node70 using the
master connection with the ratios1.00, 0.95, 0.77 for commodities of type A, B, and
C respectively. As no distinguish is made in terms of commodities theslave connection
has a higher impact for the last commodity type.
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5 Conclusions and Future Research

The tracking control problem for multi-commodity supply chains has been addressed
in this paper through a multi-agent control architecture using a pull-flow perspective.
When the demand prediction is accurate the control architecture is able to continuously
restore the inventory levels at the end nodes. This is the case in which the supply chain
is delivering commodities to clients that know their demands in advance. For situations
in which the demand is unknown by nature (as in the case of supermarkets) the control
architecture performance will be depending on the prediction accuracy.

In future research the proposed control architecture will be extended to consider the
inventory levels as a decision variable in the optimizationproblem. The question is to set
the best level of inventories over the supply chain such thatthe demand is still fulfilled
while minimizing storage costs. The case in which the supplychain is composed by
distinct economic actors will also be considered. In this case, the information exchange
between control agents is restricted and they may give conflicting objectives. Therefore,
negotiation between control agents has to be included into the proposed architecture.
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