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Abstract. Supply chains are large-scale distribution networks incivmultiple
types of commodities are present. In this paper, the opemtnanagement in
supply chains is posed as a tracking control problem. Akimery levels in the
network should be kept as close as possible to the desiradsvalver time. The
supply chain state is disturbed due to client demand at tdenedes. A multi-
agent control architecture to restore all inventory levalsr the supply chain
is proposed. First the model for the supply chain is brokenrdmto smaller
subsystems using a flow decomposition. The operations reamaxg for each
subsystem will be decided upon by a dedicated control agéetcontrol agents
solve their problems using a pull-flow perspective, stgrihthe end nodes and
then propagating upstream. Adding new components to thphsuhain will
have as a consequence the inclusion of more control agdrmprbposed archi-
tecture is easily scalable to large supply chains due to @dutar feature. The
multi-agent control architecture performance is illustchausing a supply chain
composed of four levels (suppliers, consolidation, disttion, end nodes) using
different levels of predictions about client demands. Wiith increase of predic-
tion demand accuracy the proposed control architectutdéta keep the desired
inventory level at the end nodes over time, which makes iablé for use for just
in time production strategies.

Keywords: supply chains, multi-agent systems, model predictiverogriven-
tory level



1 Introduction

Supply chain are complex systems in which multiple orgaiora (suppliers, manufac-
turers, retailers, and customers) are contributing to ncovemodities or services from
a source node to a destination node [1]. The strong coupkhgden organizations re-
stricts achieving optimal performance of the whole syst€arrently, the increase of
production far from the final customer poses a challenged@#isting supply chains.
The problem is growing in complexity and new methodologiesraquired to support
decisions leading to a more effective cooperation betweganizations. This coopera-
tion depends on the type of supply chain in terms of freedoaxthange information.
In a vertical integration all organizations are owned bysame company and therefore
the information can be shared freely. In horizontal intégradifferent organizations
are owned by different companies with possibly conflictibgeatives and competitive
issues, making the exchange information more restricted.

In this paper we consider client demand as an exogenousanthe end nodes that
disturbs the supply chain state: inventory levels. Opengtimanagement is required
to assign flows between nodes such that the client demandisfieshwhile keeping
the inventory at a desired level. This paper proposes a +agént control architec-
ture to keep the desired inventory levels over the supplynci#es supply chains may
be large-scale systems we propose a flow decomposition [#jtiin smaller subsys-
tems. A control agent is assigned to each subsystem ancsngble for determining
decisions (flows assignment) over time. The control agehtseive an optimization
problem at each time step in accordance to the Model Predi€bntrol (MPC) strat-
egy. MPC has shown successful applications in the processtry [3], and is now
gaining increasing attention in fields like supply chainf pbwer networks [5], water
distribution networks [6] and road traffic networks [7]. lapply chains, costs can be
associated to flows and quantities of stored commoditiesmgUnathematical models
to describe the flows inside supply chains it is possible tkem@edictions about the
future behavior of the supply chain. The MPC controller catednine which actions
have to be chosen in order to obtain the best performanceadkt me step the con-
troller first obtains the current state of the system it aalstrThen it formulates an
optimization problem, using the desired goals, existingst@ints, disturbances and
prediction information if available. The possibility todlude prediction information in
the optimization problem motivates the selection of thistoal strategy. Through this
mechanism the different control agents can exchange irg#tom about their current
and future decisions increasing their cooperation by amgichultiple agents to answer
to the same client demand. The order by which the controltageive their problems
is a so-called pull-flow perspective, starting from the endes, where the exogenous
input is applied, and propagated towards the source nodes.

This paper is organized as follows. In Section 2 the moded fieedescribing the
multi-commodity flows in supply chains is given. The opeyai management prob-
lem is formulated in Section 3 and addressed using a muttitalylPC architecture
where each control agent solves an optimization problenaci €liscrete time step.
The performance of the proposed architecture is testeddghraumerical experiments
in Section 4 for a hypothetical supply chain taking into aguodifferent prediction
accuracies. In Section 5 conclusions are drawn and futseareh topics are indicated.
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Fig. 1. Components in a supply chain to model the storage and trangpenomenadeg(7)
stands for node degree).

2 Modeling Supply Chains

A supply chain is a network and can be described as a g¥faphV, £) [8], where the
nodesy are related to physical locations and the afagpresent the available trans-
port between nodes. At a macroscopic level, i.e., from a igamant perspective, sup-
ply chains exhibits two major phenomena: storage abilitwéll defined areas where
commodities can be produced, manufactured or simply stargdithe transport delay
(which is the time necessary to transport commaodities betwe/o nodes using the
available transport). The storage ability is related tosthvealled center nodes that can
have multiple arriving and departing connections (see Eig)). The transport delay
for each connection is modeled as a succession of nodesimited storage capacity
(related to the transport capacity) between two center si¢gke Fig. 1(b)). Each con-
nection has one upstream center node from where it pulls aiti@s, and it also has
one downstream center node to where it pushes commoditiemettions can share
the limited transport capacity to guarantee the desiredsfloetween nodes. Supply
chains are therefore complex systems with coupled dynaanid€oupled constraints.
The complexity of the supply chain model is determined by:

ny: number of commodity types considered;

ne: humber of connections existing in the supply chain;

ne,: number of nodes belonging exclusively to connection

— ny: humber of center nodes in the supply chain that are furtivédet! into source
(upstream) nodes!’, end (downstream) node§ and store nodes: ;

— ny: number of levels present in the supply chain, includinggberce (upstream)

and end node (downstream) levels.

For illustration purposes consider the supply chain repriesl in Fig. 2. The supply
chain is divided into four levels; = 4 (source, consolidation center, distribution center
and end node levels) with a total of = 11 center nodes connected through a total of
ne = 17 connections. The supply chain transperf{s= 3 commodities (products A, B
and C) generated at dedicated sources. As particular éssatiue supply chain presents
(1) the possibility to transport commodities between tharitiution centers, (2) there
are some end nodes that can be served by more than one conreeudi (3) available
connections have different transport delays.
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Fig. 2. Example of supply chain with three commaodities, product8/nd C. For the sake of
readability thes1 connection nodes are omitted.

2.1 Proposed Centralized Dynamical Model

The supply chain is seen as a network of storage areas degasiyueues that are con-
nected by transport capacity represented by links. Thegqsegsupply chain model for
describing the supply chain dynamics is based on a flow petispeThe total number
of nodes inside the supply chain is associated with the network topology,

Ny =Ny + an Q)
i=1

For each node in the supply chain a state-space v&gt@r is defined; the individual
state-space vectors of the nodes are merged to form thesgiate vectok (k) of the
complete supply chain,

i

z; Xo(k

k)= |7 =1y, x(k) = 2:( , @
o (k) %0 (k)

V\{here:zzz(k) is the quantity per co_mm_odity typeat nodej at time stept. The dimen-.
sion of the state-space vectofk) is given bynn,. The model for the supply chain
dynamics can now be represented in a compact form as

x(k+1) = Ax(k) + Byu(k) + Bad(k), (3)
y(k) = Cx(k), (4)
x(k) > 0, ()
u(k) > 0, (6)
y(k) S ymaX7 (7)

Pyuu(k) < Umax, (8)
x(k) > Pyu(k), 9



whereu is the control action vector with length, = ny(n, — n, + n.) representing
the flows between noded, is the exogenous input vector related to the downstream
demand over time with dimensiennd, y is the current volume per commodity type at
all nodes with dimension,,, ymax are the maximum node storage capacitigs, the
maximum transport capacities according to the supply ctiedign,A, B, By andC

are the state-space matricPs,, is the projection from the control action gétinto the
state-space sét andP,,, is the projection matrix from the control action géinto the
maximum transport capacity 9ef,.x. The supply chain state, at the next time step,
k+1, is determined using (3) as a function of the current suppdircstatex(k), plus

the control action contributions, decided upon by the supply chain manager, and the
corresponding exogenous inpuds,capturing the client demand. The control action

is the flow per commodity type between nodes and is imposedtjtira corresponding
transport capacity allocation. Inequalities (5)—(9) aeeessary in this framework for
imposing the supply chain structural layout and assumptinade:

Nonnegativity of States and Flows:negative storage is not physically possible, im-
posed by (5), and all flows are assumed to be nonnegativés thimranteed by (6);

Storage Capacity: each node has to respect its own storage capacity and tleigris-r
sented by (7);

Maximum Transport Capacity: the supply chain structural layout in terms of trans-
port capacity is represented by (8);

Feasible Flows: not all flows that satisfy (5) and (6) are allowed. The assigi@wv
has to respect the quantity per commodity type availabléénrélated node and
therefore equation (9) constraints this relation.

2.2 Supply Chain Decomposition

Real supply chains may consist of tens of center nodes ardidhbhondreds of com-
modity types. It is critical to alleviate the computatiobakden introduced when con-
sidering the central model (3)—(9) such that a solution &hed in admissible time.
Using a node/arc numbering in a push-flow perspective (ftogrsburces towards the
end nodes) it is possible to obtain a highly structured stpee model without the
need to further mathematical manipulations [9]. Althoulgd hetwork is composed of
several center nodes it is important to note that a conneistioy definition the path be-
tween two center nodes. Therefore the interference of destragpnection into the set of
center nodes is done solely at two nodes. A subsystsmefined as the node collection
related to a connectiohplus the associated source and end nodes [2]. The state-spac
vectorx; for subsysteni will be composed of the correspondiRgstate-space vectors,

)_(ncifncﬂrl(k)
)_(ncifnci+2(k)

x;(k) = )_(nc—l(k) , nc, :Z(ncj), 1<i<ne, (20)
%, (k) J=1
%" (k)

L x(R)



with lengthn, (n., + 2) belonging to state-space s&t wherex* andx$" are the
state-space vectors related to the source and end nodesnfioeation: respectively.
The state-space model for subsysteisgiven by,

Xi(k + 1) = Aixi(k) + Buiui(k) + Bdez(k) + ZC Buw.uj(k) (11)
J=1,37#i

wherey; is the total quantity of commaodities at subsystémodes,u; is the control
action for subsysternhwith lengthn,, (n., + 1) belonging to sel/;, d; is the exogenous
input vector associated with subsystémA;, B, By, ; Bq, andC; are the state-
space matrices for subsysténThe last term in (11) is responsible for the information
exchange between control agents, in particular regartigig future behavior, to avoid
that two or more control agents respond to the same demasedcdrhplete subsystem
1 model is obtained including constraints of nonnegativitgtates and flows, storage
capacity, maximum transport capacity, and feasible flovthécstate space (11)—(12).

3 Supply Chain Operations Management

To limit the problem dimension to be solved at each time stepontrol agent is as-
signed to each subsystem obtained from the supply chaig tsénflow decomposition
of the previous section. This approach leads to a scalalderadular control archi-
tecture. Adding new connections and nodes has as consegtheninclusion of more
control agents. In order to assure the cooperation betweseditferent control agents
it is critical to assure or promote information exchangeusen control agents regard-
ing their current and predicted future decisions to avoidtiple agents to answer to
the same client demand. Control agents solve their problenesafter another, using
the information of the previous control agent but no comroation iterations are per-
formed between control agents [10].

3.1 MPC Formulation For One Control Agent

Control agent will solve the operations management for subsysiefmllowing an
MPC strategy. MPC is an online optimization-based contpgraach that minimizes
an objective function subject to constraints at each tirep.st

The solution to the optimization problem is an optimal setpgeof control actions
over the prediction horizon that give the best predictedgoerance. The controller
implements only the component corresponding to the firs 8tep until the beginning
of the next time step, in a receding horizon fashion. At thet tiene step the MPC
controller searches for the solution of a new optimizationbem, i.e., by obtaining
new information about the current state, available preatiaghformation, and goals.

The cost function of a control agent is defined in accordamtieet application field
and it is generally a function of the subsystem states antt@actions that the agent



controls over the prediction horiza¥,,

Np—1

Ji Ry iy Reer ) = f(xilk+ 1+ 1), wi(k +1), Xeeri(k)),  (13)
=0

where X, ; is the vector composed of the state-space vectors for eauh diep

over the prediction horizopx} (k + 1) ,..., x} (k + Np)}T, i.,; is the vector com-
posed of the control action vectors for each time step overpttediction horizon
[uf (k) ,...,uf (k+ N, — 1)]T, X.ef ; IS the desired inventory level vectdk,.r ;

is the vector composed of the desired inventory level vadior each time step over

the prediction horlzorﬁxmf k), Tef (k4 Ny )}T for control ageni. The
MPC formulation for control ageritcan be stated as:

Iélin Ji (R, Uk,iy Kret,i) (14)
k,i

subject to Xi(k‘ +1+ l) = ALXZ(k + l) + Buiui(k + l) + BdeZ(k —+ l) —+ ...

Ne

4 > By ui(k+1), (15)
J=1,j#i
vi(k) = Cixi(k), (16)
xi(k+1+ ) >0, 17)
wi(k+1) > (18)
YZ(k? + l) < Ymax,is (19)
uu ’Lul( + ) < Umax,is (20)
xi(k 4+ 1) > Praswi (k + 1), 1)

whereymax, ; is the maximum capacity for the nodes of control agemi,,.. ; repre-
sents the available transport resources according to tiwori€s structural layout for
control agent, P, ; is the projection matrix from the control action gétinto the
transport resource set for control agér®,, ; is the projection from the control action
setl; into the state-space sét.

3.2 Multi-Agent Control Architecture

The order in which the control agents solve their problemsaah time step can be
fixed over time or depend on the current supply chain statepaedictions. For the
sake of simplicity we consider that the ords) = [o1 ... 0, ], With1 < 0; < ng,
by which the control agents solve their problems is fixed twee and is a supply chain
configuration parameter set before the beginning of opmratinanagement. The order
of control agents is set following a pull-flow perspectivestfthe control agents related
to the end nodes solve their problems to keep the desiredtimmdevels. This will pull
commaodities from the distribution center level. Then thatool agents related to the
distribution centers solve their problems, pulling comiitied from the consolidation
level and so on, until the control agents that pull commedifrom the source nodes.
The starting control agent is responsible for setting thal tamount of transport
capacity that is availabl® = u,,. for the current time step and the current prediction
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Fig. 3. Multi-agent control architecture schematics at a time.step

for future decisions se®° = {Gx_1.0,,.--, tx_1,0,, f. After the initial configuration
iterations are executed. The starting control agen has all transport capacity avail-
able. Each control agent (i = 1,...,n.), one after another, performs the following
steps at an iteration (see Fig. 3):

— the maximum admissible transport capacity for control a4gefis determined as
the minimum between the subsystem maximum transport dgpagi. ., and the
transport capacity not yet assigned,

Umax,0; — min (Pmax,oi 6ot ) umax,oi) ) (22)

whereP .« o, IS the projection matrix from the global transport capas#i/;ax
to the maximum transport capacity 861, ,, for subsysten;;

— the optimal control actiomy: ., iS the first time step component of the control
agent optimal sequence over the prediction horiagn ,, found solving the MPC
problem (14)—(21) for control ageiit

— the available transport capacity to the next control agent is updated:

P0i+1 — P9 — Pmu.,oi (k)uopt-,oi (k)’ (23)

whereP,,,, ., (k) is the projection matrix from control agent handling resource
setl,, to the control action séty,ax;

— the predictions for future decisions are updated and ddrint@:+* replacing the
control agent initial predictiol;_1 ., by the new optimal sequence foudigl, o, -

4 Simulation Experiments

The proposed architecture is applied to the supply chaisemted in Fig. 2. We focus
on addressing the supply chain operations management as astignment problem
using the multi-agent architecture presented in Sectiorh8.structural design of the
supply chain is out of the scope of this paper. For the sakkadfycwe consider constant
inventory levels over time. The performance obtained withrmulti-agent architecture
will be evaluated for three different configurations comieg the prediction accuracy
available to the control agents: exact prediction (Testcjstant prediction (Test B)
and no prediction (Test C).



Parameters c1| c2| c3| ca| cs||cs|cr||cs|co|cio|cii|ciz||cis|cia|c15|Ci6|C17
Transport [hours]|| 14| 8| 8| 8| 14| 8| 8| 6| 8| 12| 10| 8|| 8| 10| 12| 8| 6
Source node 62| 62| 63| 64| 64/|65|65(/66|66| 66| 66| 66|| 67| 67| 67| 67| 67
End node 65| 65| 65| 65| 65||66(67|68|69| 70| 71| 67|| 66| 69| 70| 71| 72
Nodes f.;) 6| 3| 3| 3| 6| 3| 3| 2| 3| 5| 4| 3|| 3| 4| 5| 3] 2
Flows T4 4] 4] 7| 4| 4 3| 4] 6] 5| 4| 4| 5| 6| 4| 3
Transport cost 1| 5| 5| 5| 1 5| 5] 5| 5| 5| 5| 5| 5| 5] 5| 5| 5
Transport capacify260({100{100{100|260|(80|80{|30{30| 30| 30| 10{| 10| 30| 30| 30| 30

Table 1. Connection details for the considered supply chain.

[CommodityJend nodess|end nodes9|end noder0]end noder1[end noder2]|

A 7.0 9.8 12.6 9.8 7.0
B 8.4 8.4 11.2 1.2 5.6
C 5.6 7.0 9.8 8.4 4.2
Total 15 18 24 21 12

Table 2. Supply chain average demand for end nodes (quantity perstiem.

4.1 Setup

The supply chain monitoring and management decision upsiaene every hours.
All supply chain nodes work on 24 hour daily basis. The end nodes are opened to
clients from 8 am to 10 pm. The first disturbance will be avaéaat 10 am translating
the consumption per commaodity type between 8 am and 10 amsUpyay chain can
be delivering commaodities to supermarkets or raw matetiailsdustries for example.

Using 2 hours as time step size, the transport delay per conneditnanslated
into the required number of nodes to capture this phenonsssaTable 1). The supply
chain model has1 nodes to capture the transport delay for all connectioassfort
delays are assumed fixed. For end no@e<0, and71 commodities can be delivered
from both distribution centers usingiaaster connection (less transport time) oslave
connection (higher transport time). The supply chain dadriarcreated as a random
demand per time step for all commodities at the five end nockrgér nodess to 72,
for average values see Table 2). The inventory levels ar®seipport the associated
average demand during two, three and two complete daysd@rtti nodes, distribution
centers, and consolidation center respectively. To irseréide demand challenge applied
to the supply chain two demand peaks are set: one at the foaytfa factor ofi.5) and
one at the eight day (a factor .

Control agent is assigned to connectianAll control agents solve the MPC prob-
lem using a prediction horizon @fsteps corresponding to the biggest connection trans-
port delay at the supply chain. As a cost function a linearajigrior deviations from
the desired inventory level and transport costs is used.stdte weights for the ob-
jective function are set in a pull perspective; in that sehsebenefit for staying at a
downstream node has to be bigger than the benefit staying atsream node. The
order by which the control agents solve their problems isfélewing: c15, c10, ci6,
C11, Cg, C14, C17, C8, Cg, C13, C7, C12, C1, C2, C3, ¢5 @andcy. When multiple connections
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Fig. 4. Inventory levels for exact demand prediction (test A).

arrive at the same center node priority was given to the staseto the cheapest con-
nection. The multi-agent architecture is solved at each 8tep of the simulation using
the MPT v2.6.3 toolbox [11] with the CDD Criss—Cross solarlfnear programming
problems. The simulations are performed using MatLab RBG@®a personal com-
puter with a processor Intel(R) Core(TM) at 1.60 GHz with8 GB RAM memory in

a 64-bit Operating System.

4.2 Results Analysis

The computational burden can be associated to the contiohanatricesB,, andB,,, .
Using the proposed decomposition it is possible to redueerthtrix dimension from
50544 elements t®2736, this is a reduction 094.4%. Naturally the ratio of nonzero
elements grows fromM.009 to 0.171. For test A, the average computation time for each
time step wag7.04 s, with a maximum time 040.8 s and a minimum time of7.1 s.

Increasing the accuracy of the available demand predittiermulti-agent archi-
tecture is able to keep the desired inventory levels at tidenedes, see Fig. 4(b). The
architecture uses the available prediction to anticipateré events and start to move
commaodities in advance. Although the inventory level atehd nodes remain constant
the other nodes face variation in their inventory levelg (Sig. 4(a)). With an accuracy
decrease on the demand prediction the control agents dawmetthe necessary infor-
mation to anticipate correctly the future demand. As a cgusace the inventory levels
at the end nodes start to face bigger oscillations and caoutiof stock (see Fig. 5).
As is to be expected, the average deviation from the initiz@mtory level is smaller for
control agents that use exact demand prediction and is biggene case of no demand
prediction (see Table 3). Due to the supply chain structeslign all demand predic-
tions show significant deviation at end nagke The exact demand prediction concen-
trates all deviation in commodity’. End noder0 has the worst indicators among the
exact demand prediction which is justified by the higher detnand transport delay
from the distribution centers associated.

Fig. 6 shows the state evolution for connectidnwhich is theslave connection for
node71. Commodities are only dispatched from the connection sonode if they are
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[Deviatiof  end nodes8] end nodes9) end noder0] end node71] end noder2||
maxa 0.0/9.5/39.5] 0/26.8/68.0]12.5/34.3/126.0] 0.0/39.0/67.5]0.0/5.3/34.7
maxz | 0.0/31.7/73.60/12.1/84.0(11.8/18.0/112.0|0.0/28.6/112.0|0.0/6.2/30.2
maxc  [46.0/17.1/33.6| 0/14.8/62.1| 8.3/23.4/98.0| 0.0/25.0/78.0(2.1/4.3/21.7
mean, 0.0/2.2/11.8]0.0/3.6/22.4]  0.1/7.4/43.5] 0.0/4.2/22.4[0.0/1.8/11.5
means 0.0/2.8/15.5(0.0/3.3/21.0|  0.2/6.5/37.1| 0.0/4.1/27.3| 0.0/1.5/9.2
mean: 1.5/1.9/9.7/0.0/2.8/16.1|  0.1/5.8/32.3| 0.0/3.6/21.4| 0.0/1.2/7.0

Table 3. Inventory analysis for the entire simulation time (exdoge/none demand prediction),
bold values stands for out of stock.
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Fig. 6. Quantity of commodities at first and last nodes for connectio(full line: X; 1, dash-dot

line: X;,n.,)-

guaranteed to be accepted at the connection end node. Sherevaiting queue at the
connection. Decreasing the accuracy in demand predictakemthe slave connection
to transports a lower volume of commodities leading to threrelese of inventory levels
at the end node. For exact prediction, commodities are eleld’at nod&0 using the
master connection with the ratios.00, 0.95, 0.77 for commodities of type A, B, and
C respectively. As no distinguish is made in terms of comiiesltheslave connection
has a higher impact for the last commaodity type.
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5 Conclusions and Future Research

The tracking control problem for multi-commodity supplyaths has been addressed
in this paper through a multi-agent control architecturagis pull-flow perspective.
When the demand prediction is accurate the control ardhitecs able to continuously
restore the inventory levels at the end nodes. This is theioashich the supply chain
is delivering commodities to clients that know their demamdadvance. For situations
in which the demand is unknown by nature (as in the case ofrswgkets) the control
architecture performance will be depending on the premticiiccuracy.

In future research the proposed control architecture wikkktended to consider the
inventory levels as a decision variable in the optimizafiooblem. The question is to set
the best level of inventories over the supply chain suchttfeastiemand is still fulfilled
while minimizing storage costs. The case in which the sugplgin is composed by
distinct economic actors will also be considered. In thisegshe information exchange
between control agents is restricted and they may give ctinfliobjectives. Therefore,
negotiation between control agents has to be included lit@toposed architecture.
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