Abstract
In multi-label learning, the relationship among labels is well accepted to be important, and various methods have been proposed to exploit label relationships. Amongst them, ensemble of classifier chains (ECC) which builds multiple chaining classifiers by random label orders has drawn much attention. However, the ensembles generated by ECC are often unnecessarily large, leading to extra high computational and storage cost. To tackle this issue, in this paper, we propose selective ensemble of classifier chains (SECC) which tries to select a subset of classifier chains to composite the ensemble whilst keeping or improving the performance. More precisely, we focus on the performance measure F1-score, and formulate this problem as a convex optimization problem which can be efficiently solved by the stochastic gradient descend method. Experiments show that, compared with ECC, SECC is able to obtain much smaller ensembles while achieving better or at least comparable performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recognition 37(9), 1757–1771 (2004)
Cesa-Bianchi, N., Re, M., Valentini, G.: Synergy of multi-label hierarchical ensembles, data fusion, and cost-sensitive methods for gene functional inference. Machine Learning 88(1), 209–241 (2012)
Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3), 1–27 (2011)
Dembczynski, K., Cheng, W., Hüllermeier, E.: Bayes optimal multilabel classification via probabilistic classifier chains. In: Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, pp. 279–286 (2010)
Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.A.: Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002)
Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing Systems 14, pp. 681–687. MIT Press, Cambridge (2002)
Fürnkranz, J., Hüllermeier, E., Loza Mencía, E., Brinker, K.: Multilabel classification via calibrated label ranking. Machine Learning 73(2), 133–153 (2008)
Ghamrawi, N., McCallum, A.: Collective multi-label classification. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, Bremen, Germany, pp. 195–200 (2005)
Giacinto, G., Roli, F., Fumera, G.: Design of effective multiple classifier systems by clustering of classifiers. In: Proceedings of the 15th International Conference on Pattern Recognition, Barcelona, Spain, pp. 160–163 (2000)
Joachims, T.: A support vector method for multivariate performance measures. In: Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, pp. 377–384 (2005)
Kumar, A., Vembu, S., Menon, A.K., Elkan, C.: Learning and inference in probabilistic classifier chains with beam search. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part I. LNCS, vol. 7523, pp. 665–680. Springer, Heidelberg (2012)
Li, N., Tsang, I.W., Zhou, Z.-H.: Efficient optimization of performance measures by classifier adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence (2013) (preprint)
Li, N., Zhou, Z.-H.: Selective ensemble under regularization framework. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp. 293–303. Springer, Heidelberg (2009)
McCallum, A.: Multi-label text classification with a mixture model trained by EM. Working Notes of AAAI 1999 Workshop on Text Learning (1999)
Read, J., Pfahringer, B., Holmes, G.: Multi-label classification using ensembles of pruned sets. In: Proceedings of the 8th IEEE International Conference on Data Mining, Pisa, Italy, pp. 995–1000 (2008)
Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Machine Learning 85(3), 333–359 (2011)
Schapire, R., Singer, Y.: BoosTexter: A boosting-based system for text categorization. Machine Learning 39(2-3), 135–168 (2000)
Shalev-Shwartz, S., Tewari, A.: Stochastic methods for l1-regularized loss minimization. Journal of Machine Learning Research 12, 1865–1892 (2011)
Taskar, B., Guestrin, C., Koller, D.: Max-margin markov networks. In: Advances in Neural Information Processing Systems 16, pp. 25–32. MIT Press, Cambridge (2003)
Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multilabel classification of music into emotions. In: Proceedings of 2008 International Conference on Music Information Retrieval, Philadelphia, PA, pp. 325–330 (2008)
Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research 6, 1453–1484 (2005)
Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., Vlahavas, I.: MULAN: A Java library for multi-label learning. Journal of Machine Learning Research 12, 2411–2414 (2011)
Tsoumakas, G., Vlahavas, I.: Random k-labelsets: An ensemble method for multilabel classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007)
Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Semantic annotation and retrieval of music and sound effects. IEEE Transactions on Audio, Speech and Language Processing 16(2), 467–476 (2008)
Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for hierarchical multi-label classification. Machine Learning 73(2), 185–214 (2008)
Zaragoza, J.H., Sucar, L.E., Morales, E.F., Bielza, C., Larrañaga, P.: Bayesian chain classifiers for multidimensional classification. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Spain, pp. 2192–2197 (2011)
Zhang, M.-L., Zhang, K.: Multi-label learning by exploiting label dependency. In: Proceedings of the 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, pp. 999–1007 (2010)
Zhang, M.-L., Zhou, Z.-H.: ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition 40(7), 2038–2048 (2007)
Zhang, Y., Burer, S., Street, W.: Ensemble pruning via semi-definite programming. Journal of Machine Learning Research 7, 1315–1338 (2006)
Zhou, Z.-H.: Ensemble Methods: Foundations and Algorithms. Chapman & Hall/CRC, Boca Raton, FL (2012)
Zhou, Z.-H., Wu, J., Tang, W.: Ensembling neural networks: Many could be better than all. Artificial Intelligence 137(1-2), 239–263 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, N., Zhou, ZH. (2013). Selective Ensemble of Classifier Chains. In: Zhou, ZH., Roli, F., Kittler, J. (eds) Multiple Classifier Systems. MCS 2013. Lecture Notes in Computer Science, vol 7872. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38067-9_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-38067-9_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38066-2
Online ISBN: 978-3-642-38067-9
eBook Packages: Computer ScienceComputer Science (R0)