Abstract
Error-correcting output coding (ECOC) is nowadays an established technique to build polychotomous classification systems by aggregating highly efficient dichotomizers. This approach has exhibited good classification performance and generalization capabilities in many practical applications. In this field much work has been devoted to study new solutions both for the coding and the decoding phase, but little attention has been paid to the algebraic tools typically employed in the Coding Theory, which could provide an ECOC design approach based on robust theoretical foundations. In this paper we propose an ECOC classification system based on Low Density Parity Check (LDPC) Codes, a well known technique in Coding Theory. Such framework is particularly suitable to define an ECOC system that employs dichotomizers provided of a reject option. The experiments on some public data sets have demonstrated that, in this way, the ECOC system can reach good recognition rates when a suitable reject level is imposed to the dichotomizers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: A unifying approach for margin classifiers. Journal of Machine Learning Research 1, 113–141 (2000)
Alpaydin, E., Mayoraz, E.: Learning error-correcting output codes from data. In: Ninth International Conference on Artificial Neural Networks, ICANN 1999, Conf. Publ. No. 470, vol. 2, pp. 743–748 (1999)
Bautista, M.Á., Escalera, S., Baró, X., Radeva, P., Vitrià, J., Pujol, O.: Minimal design of error-correcting output codes. Pattern Recognition Letters 33(6), 693–702 (2012)
Crammer, K., Singer, Y.: On the learnability and design of output codes for multiclass problems. In: Cesa-Bianchi, N., Goldman, S.A. (eds.) COLT, pp. 35–46. Morgan Kaufmann (2000)
Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research 2, 263–286 (1995)
Escalera, S., Pujol, O., Radeva, P.: On the decoding process in ternary error-correcting output codes. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 120–134 (2010)
Escalera, S., Tax, D.M.J., Pujol, O., Radeva, P., Duin, R.P.W.: Subclass problem-dependent design for error-correcting output codes. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1041–1054 (2008)
Frank, A., Asuncion, A.: UCI machine learning repository (2010)
Gallager, R.G.: Low density parity-check codes. MIT Press (1963)
Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning, ch. 11. MIT Press, Cambridge (1999)
Kong, E.B., Dietterich, T.G.: Error-correcting output coding corrects bias and variance. In: ICML, pp. 313–321 (1995)
Marrocco, C., Simeone, P., Tortorella, F.: Embedding reject option in ECOC through LDPC codes. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 333–343. Springer, Heidelberg (2007)
Pietraszek, T.: On the use of ROC analysis for the optimization of abstaining classifiers. Machine Learning 68(2), 137–169 (2007)
Pishro-Nik, H., Fekri, F.: On decoding of low-density parity-check codes over the binary erasure channel. IEEE Trans. Inf. Theor. 50(3), 439–454 (2006)
Pujol, O., Radeva, P., Vitrià, J.: Discriminant ECOC: A heuristic method for application dependent design of error correcting output codes. IEEE Trans. Pattern Anal. Mach. Intell. 28(6), 1007–1012 (2006)
Richardson, T.J., Urbanke, R.: Modern Coding Theory. Cambridge University Press (2008)
Shokrollahi, A.: An introduction to low-density parity-check codes. In: Khosrovshahi, G.B., Shokoufandeh, A., Shokrollahi, A. (eds.) Theoretical Aspects of Computer Science 2000. LNCS, vol. 2292, pp. 175–197. Springer, Heidelberg (2002)
Tanner, R.M.: A Recursive Approach to Low Complexity Codes. IEEE Transactions on Information Theory 27(5), 533–547 (1981)
Tapia, E., Bulacio, P., Angelone, L.: Recursive ECOC classification. Pattern Recognition Letters 31(3), 210–215 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Marrocco, C., Simeone, P., Tortorella, F. (2013). Coding Theory Tools for Improving Recognition Performance in ECOC Systems. In: Zhou, ZH., Roli, F., Kittler, J. (eds) Multiple Classifier Systems. MCS 2013. Lecture Notes in Computer Science, vol 7872. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38067-9_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-38067-9_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38066-2
Online ISBN: 978-3-642-38067-9
eBook Packages: Computer ScienceComputer Science (R0)