Abstract
Along with recent technological advances more and more new threats and advanced cyber-attacks appear unexpectedly. Developing methods which allow for identification and defense against such unknown threats is of great importance. In this paper we propose new ensemble method (which improves over the known cross-feature analysis, CFA, technique) allowing solving anomaly detection problem in semi-supervised settings using well established supervised learning algorithms. Theoretical correctness of the proposed method is demonstrated. Empirical evaluation results on Android malware datasets demonstrate effectiveness of the proposed approach and its superiority against the original CFA detection method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Comput. Surv. 41(3), 1–58 (2009)
Huang, Y.A., Fan, W., Lee, W., Yu, P.S.: Cross-feature analysis for detecting ad-hoc routing anomalies. In: IEEE 23rd Int. Conf. on Distributed Computing Systems, pp. 478–487 (2003)
Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier Chains for Multi-label Classification. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part II. LNCS, vol. 5782, pp. 254–269. Springer, Heidelberg (2009)
Symantec blog: http://www.symantec.com/connect/blogs/androiddropdialer-identified-google-play
Google mobile blog, android and security: http://googlemobile.blogspot.co.il/2012/02/android-and-security.html
Noto, K., Brodley, C., Slonim, D.: Anomaly detection using an ensemble of feature models. In: Proc. of the 10th IEEE International Conf. on Data Mining, pp. 953–958 (2010)
Ye, N., Xu, M., Emran, S.M.: Probabilistic networks with undirected links for anomaly detection. In: Proceedings of the IEEE Systems, Man, and Cybernetics Information Assurance and Security Workshop, West Point, NY, pp. 175–179 (2000)
Rokach, L., Maimon, O.: Ensemble Methods for Classifiers. In: Data Mining and Knowledge Discovery Handbook. Springer US (2005)
Weka 3: Data Mining Software in Java, http://www.cs.waikato.ac.nz/ml/weka/
Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation Forest: A New Classifier Ensemble Method. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(10), 1619–1630 (2006)
Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tenenboim-Chekina, L., Rokach, L., Shapira, B. (2013). Ensemble of Feature Chains for Anomaly Detection. In: Zhou, ZH., Roli, F., Kittler, J. (eds) Multiple Classifier Systems. MCS 2013. Lecture Notes in Computer Science, vol 7872. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38067-9_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-38067-9_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38066-2
Online ISBN: 978-3-642-38067-9
eBook Packages: Computer ScienceComputer Science (R0)