Skip to main content

Randomized Bayesian Network Classifiers

  • Conference paper
Multiple Classifier Systems (MCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7872))

Included in the following conference series:

  • 2473 Accesses

Abstract

In this paper, we propose Randomized Bayesian Network Classifiers (RBNC). It borrows the idea of ensemble learning by constructing a collection of semi-naive Bayesian network classifiers and then combines their predictions as the final output. Specifically, the structure learning of each component Bayesian network classifier is performed by just randomly choosing the parent of each attribute in addition to class attribute, and parameter learning is performed by using maximum likelihood method. RBNC retains many of naive Bayes’ desirable property, such as scaling linearly with respect to both the number of instances and attributes, needing a single pass through the training data and robust to noise, etc. On the 60 widely used benchmark UCI datasets, RBNC outperforms state-of-the-art Bayesian classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pearl, J.: Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  2. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29, 131–163 (1997)

    Article  MATH  Google Scholar 

  3. Carvalho, A.M., Roos, T., Oliveira, A., Myllymaki, P.: Discriminative learning of bayesian networks via factorized conditional log-likelihood. Journal of Machine Learning Research 12, 2181–2210 (2011)

    MathSciNet  Google Scholar 

  4. Domingos, P., Pazzani, M.J.: On the optimality of the simple bayesian classifier under zero-one loss. Machine Learning 29(2), 103–130 (1997)

    Article  MATH  Google Scholar 

  5. Webb, G.I., Boughton, J.R., Wang, Z.: Not so naive bayes: Aggregating one-dependence estimators. Machine Learning 58(1), 5–24 (2005)

    Article  MATH  Google Scholar 

  6. Webb, G.I., Boughton, J.R., Zheng, F., Ting, K., Salem, H.: Learning by extrapolation from marginal to full-multivariate probability distributions: Decreasingly naive bayesian classification. Machine Learning 86(2), 233–272 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Salem, H., Suraweera, P., Webb, G.I., Boughton, J.R.: Techniques for efficient learning without search. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012, Part I. LNCS, vol. 7301, pp. 50–61. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Wu, X.D., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.H., Steinbach, M., Hand, D.J., Steinberg, D.: Top 10 algorithms in data mining. Knowledge and Information Systems 14(1) (2008)

    Google Scholar 

  9. Grossman, D., Domingos, P.: Learning bayesian network classifiers by maximizing conditional likelihood. In: Proceedings of the 21st International Conference on Machine Learning, pp. 46–53 (2004)

    Google Scholar 

  10. Jing, Y.S., Pavlovi, V., Rehg, J.M.: Efficient discriminative learning of bayesian network classifier via boosted augmented naive bayes. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 369–376 (2005)

    Google Scholar 

  11. Jiang, L., Zhang, H., Cai, Z.: A novel bayes model: hidden naive bayes. IEEE Transations on Knowledge and Data Engineering 21(10), 1361–1371 (2009)

    Article  Google Scholar 

  12. Langley, P., Sage, S.: Induction of selective bayesian classifiers. In: Proceedings of the Uncertainty in Artificial Intelligence, pp. 399–406 (1994)

    Google Scholar 

  13. Zhang, H., Jiang, L.X., Su, J.: Hidden naive bayes. In: The Twentieth National Conference on Artificial Intelligence (AAAI 2005), pp. 919–924 (2005)

    Google Scholar 

  14. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  15. Blake, C., Merz, C.J.: UCI repository of machine learning databases. Department of ICS, University of California, Irvine, http://www.ics.uci.edu/~mlearn/MLRepository.html

  16. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Q., Li, P. (2013). Randomized Bayesian Network Classifiers. In: Zhou, ZH., Roli, F., Kittler, J. (eds) Multiple Classifier Systems. MCS 2013. Lecture Notes in Computer Science, vol 7872. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38067-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38067-9_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38066-2

  • Online ISBN: 978-3-642-38067-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics