Skip to main content

A New Feature Fusion Approach Based on LBP and Sparse Representation and Its Application to Face Recognition

  • Conference paper
Multiple Classifier Systems (MCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7872))

Included in the following conference series:

Abstract

In this paper, we propose a new feature fusion approach based on local binary pattern (LBP) and sparse representation (SR). Firstly, local features are extracted by LBP and global features are sparse coefficients which are obtained via decomposing samples based on the over-complete dictionary. Then the global and local features are fused in a serial fashion. Afterwards PCA is used to reduce the dimensionality of the fused vector. Finally, SVM is employed as a classifier on the reduced feature space for classification. Experimental results obtained on publicly available databases show that the proposed feature fusion method is more effective than other methods like LBP+PCA, Gabor+PCA and Gabor+SR in terms of recognition accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chellappa, R., Wilson, C.L., Sirohey, S.: Human and Machine Recognition of Faces: A Survey. Proceedings of the IEEE 83(5), 705–741 (1995)

    Article  Google Scholar 

  2. Turk, M., Pentland, A.: Face Recognition Using Eigenfaces. In: CVPR, pp. 586–591 (1991)

    Google Scholar 

  3. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces versus Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE PAMI 9(7), 711–720 (1997)

    Article  Google Scholar 

  4. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.: Face Recognition Using Laplacianfaces. IEEE Trans. Pattern Analysis and Machine Intelligence 27(3), 328–340 (2005)

    Article  Google Scholar 

  5. Ahonen, T., Hadid, A., Pietikäinen, M.: Face Recognition with Local Binary Patterns. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Bicego, M., Lagorio, A., Grosso, E., Tistarelli, M.: On the Use of SIFT Features for Face Authentication. In: Proc. of IEEE Conf. on Biometrics, in Association with CVPR Biometrics, p. 35 (2006)

    Google Scholar 

  7. Huang, Y.S., Suen, C.Y.: Method of Combining Multiple Experts for the Recognition of Unconstrained Handwritten Numerals. IEEE Trans. Pattern Anal. Mach. Intell. 7(1), 90–94 (1995)

    Article  Google Scholar 

  8. Constantinidis, A.S., Fairhurst, M.C., Rahman, A.F.R.: A New Multi-Expert Decision Combination Algorithm and Its Application to the Detection of Circumscribed Masses in Digital Mammograms. Pattern Recognition 34(8), 1528–1537 (2001)

    Article  Google Scholar 

  9. Jin, X.-Y., Zhang, D., Yang, J.-Y.: Face Recognition Based on a Group Decision-Making Combination Approach. Pattern Recognition 36(7), 1675–1678 (2003)

    Article  Google Scholar 

  10. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On Combining Classifiers. Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)

    Article  Google Scholar 

  11. Sun, Q.-S., Zeng, S.-G., Liu, Y., Heng, P.-A., Xia, D.-S.: A New Method of Feature Fusion and Its Application in Image Recognition. Pattern Recognition 38(12), 2437–2448 (2005)

    Article  Google Scholar 

  12. Huang, G.H.: Fusion (2D)2PCALDA: A New Method for Face Recognition. Applied Mathematics and Computation 216(11), 3195–3199 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Song, L.: Face Recognition Based on Feature Fusion. In: Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), pp. 1524–1527 (2011)

    Google Scholar 

  14. Chowdhury, S., Sing, J.K., Basu, D.K., Nasipuri, M.: Face Recognition by Fusing Local and Global Discriminant Features. In: 2nd International Conference on Emerging Applications of Information Technology (EAIT), pp. 102–105 (2011)

    Google Scholar 

  15. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust Face Recognition via Sparse Representation. IEEE PAMI 31(2), 210–227 (2009)

    Article  Google Scholar 

  16. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans. Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

    Article  Google Scholar 

  17. Ojala, T., Pietikinen, M.: A Comparative Study of Texture Measures with Classification Based on Feature Distribution. Pattern Recognition 29(1), 51–59 (1996)

    Article  Google Scholar 

  18. Ahonen, T., Hadid, A., Pietikainen, M.: Face Description with Local Binary Patterns: Application to Face Recognition. PAMI 28(12), 2037–2041 (2006)

    Article  Google Scholar 

  19. Basri, R., Jacobs, D.: Lambertian Reflectance and Linear Subspaces. IEEE Trans. Pattern Analysis and Machine Intelligence 25(2), 218–233 (2003)

    Article  Google Scholar 

  20. Donoho, D.: For Most Large Underdetermined Systems of Linear Equations the Minimal l 1-Norm Solution Is Also the Sparsest Solution. Comm. Pure and Applied Math. 59(6), 797–829 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Figueiredo, M., Nowak, R., Wright, S.: Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems. IEEE Journal of Selected Topics in Signal Processing 1(4), 586–597 (2007)

    Article  Google Scholar 

  22. Drori, I., Donoho, D.: Solution of l 1-Minimization Problems by LARS/Homotopy Methods. In: ICASSP, pp. 636–639 (2006)

    Google Scholar 

  23. Hale, E., Yin, W., Zhang, Y.: A Fixed-Point Continuation Method for l 1-Regularized Minimization with Applications to Compressed Sensing. Technical Report, Rice University (2007)

    Google Scholar 

  24. Yang, J., Yang, J.-Y., Zhang, D., Lu, J.: Feature Fusion: Parallel Strategy vs. Serial Strategy. Pattern Recognition 36(6), 1369–1381 (2003)

    Article  MATH  Google Scholar 

  25. Guo, G.-D., Li, S.-Z., Chan, K.-L.: Support Vector Machines for Face Recognition. Image and Vision Computing 19(9-10), 631–638 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yin, HF., Wu, XJ. (2013). A New Feature Fusion Approach Based on LBP and Sparse Representation and Its Application to Face Recognition. In: Zhou, ZH., Roli, F., Kittler, J. (eds) Multiple Classifier Systems. MCS 2013. Lecture Notes in Computer Science, vol 7872. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38067-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38067-9_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38066-2

  • Online ISBN: 978-3-642-38067-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics