Abstract
Medical imaging has come a long way since the first X-Ray pictures were taken in 1895 and X-Ray is still a primary image source for diagnosis and intra-operative guidance in today’s clinical setting. However, grayscale X-Ray images have some limitations, especially lacking proper depth cues visible to the clinician. In the area of psychology, color has been deemed as self-sufficient depth cues in the visual field. Thus, the focus of this work is integrating color directly in X-Ray in order to disambiguate the sequences of anatomy and hence provide intelligent depth cues for quicker X-Ray interpretation. To achieve this we register pre-operative CT data and X-Ray. A new transfer function is derived using depth and intensity for color emission. Results from a questionnaire to surgeons and medical imaging experts and Likert scale show a positive result of 4.4 average on a 5 scale. Furthermore, we assess the impact of misalignment of the pre-operative CT data and show that the color X-Ray image is very resilient to such errors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Benndorf, G.: Color-coded digital subtraction angiography: the end of a monochromatic era? AJNR American Journal of Neuroradiology 31(5), 925–927 (2010)
Burns, M., Haidacher, M., Wein, W., Viola, I., Gröller, E.: Feature emphasis and contextual cutaways for multimodal medical visualization. In: Proceedings of Eurographics/IEEE VGTC Symposium on Visualization, EuroVis 2007, pp. 275–282 (May 2007)
Díaz, J., Vazquez, P.: Depth-enhanced maximum intensity projection. In: IEEE/EG International Symposium on Volume Graphics 8, pp. 1–8 (2010)
Guibal, C.R.C., Dresp, B.: Interaction of color and geometric cues in depth perception: When does r̈edm̈ean n̈ear.̈ Psychological Research 69, 30–40 (2004)
Kersten, M., Stewart, J., Troje, N., Ellis, R.: Enhancing depth perception in translucent volumes. IEEE Transactions on Visualization and Computer Graphics 12, 1117–1124 (2006)
Ropinski, T., Steinicke, F., Hinrichs, K.H.: Visually supporting depth perception in angiography imaging. In: Butz, A., Fisher, B., Krüger, A., Olivier, P. (eds.) SG 2006. LNCS, vol. 4073, pp. 93–104. Springer, Heidelberg (2006)
Strother, C.M., Bender, F., Deuerling-Zheng, Y., Royalty, K., Pulfer, K.A., Baumgart, J., Zellerhoff, M., Aagaard-Kienitz, B., Niemann, D.B., Lindstrom, M.L.: Parametric color coding of digital subtraction angiography. AJNR American Journal of Neuroradiology 31(5), 919–924 (2010)
Verhoeff, F.H.: An optical illusion due to chromatic aberration. American Journal of Ophthalmology 11, 898–900 (1928)
Wieczorek, M., Aichert, A., Fallavollita, P., Kutter, O., Ahmadi, A., Wang, L., Navab, N.: Interactive 3D visualization of a single-view X-Ray image. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 73–80. Springer, Heidelberg (2011)
Worthington, C., Peters, T.M., Ethier, R., Melanson, D., Theron, J., Villemure, J.G., Olivier, A., Clark, J., Mawko, G.: Stereoscopic digital subtraction angiography in neuroradiologic assessment. AJNR Am. J. Neuroradiol. 6(5), 802–808 (1985)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aichert, A. et al. (2013). The Colored X-Rays. In: Linte, C.A., Chen, E.C.S., Berger, MO., Moore, J.T., Holmes, D.R. (eds) Augmented Environments for Computer-Assisted Interventions. AE-CAI 2012. Lecture Notes in Computer Science, vol 7815. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38085-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-38085-3_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38084-6
Online ISBN: 978-3-642-38085-3
eBook Packages: Computer ScienceComputer Science (R0)