
NASA/TM–2012–216481

Hierarchical Safety Cases

Ewen W. Denney
SGT, Inc.
Ames Research Center, Moffett Field, California

Iain J. Whiteside
Centre for Intelligent Systems and their Applications
University of Edinburgh, Scotland

December 2012

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part in
helping NASA maintain this important role.

The NASA STI Program operates under the
auspices of the Agency Chief Information
Officer. It collects, organizes, provides for
archiving, and disseminates NASA’s STI. The
NASA STI Program provides access to the
NASA Aeronautics and Space Database and its
public interface, the NASA Technical Report
Server, thus providing one of the largest
collection of aeronautical and space science STI
in the world. Results are published in both
non-NASA channels and by NASA in the NASA
STI Report Series, which includes the following
report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of
peer-reviewed formal professional papers, but
having less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by
NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s
mission.

Specialized services also include creating custom
thesauri, building customized databases, and
organizing and publishing research results.

For more information about the NASA STI
Program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA STI Help
Desk at 443-757-5803

• Phone the NASA STI Help Desk at
443-757-5802

• Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076–1320

NASA/TM–2012–216481

Hierarchical Safety Cases

Ewen W. Denney
SGT, Inc.
Ames Research Center, Moffett Field, California

Iain J. Whiteside
Centre for Intelligent Systems and their Applications
University of Edinburgh, Scotland

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

December 2012

Acknowledgments

This work was carried out by Iain Whiteside at the NASA Ames Research Center during an internship
funded by the AFCS element of the SSAT project in the Aviation Safety Program of the NASA
Aeronautics Mission Directorate.

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an
offical endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and
Space Administration.

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

Abstract

We introduce hierarchical safety cases (or hicases) as a technique to overcome some of the
difficulties that arise creating and maintaining industrial-size safety cases. Our approach
extends the existing Goal Structuring Notation with abstraction structures, which allow
the safety case to be viewed at different levels of detail. We motivate hicases and give
a mathematical account of them as well as an intuition, comparing them to other related
concepts. We give a second definition which corresponds closely to our implementation
of hicases in the AdvoCATE Assurance Case Editor and prove the correspondence between
the two. Finally, we suggest areas of future enhancement, both theoretically and practically.

1

Contents
1 Introduction 4

2 Goal Structuring Notation 6

3 Examples of Hierarchy 7
3.1 Abstract Evidence . 7
3.2 Abstract Strategies . 9
3.3 Abstract Goals . 17
3.4 Case Studies . 17

3.4.1 Aileron Correctness Proof 17
3.4.2 Swift High-level Structure 17

3.5 Non-examples of Abstraction . 21
3.6 Summary . 21

4 Safety Cases 23
4.1 Safety Cases . 23
4.2 Hierarchical Safety Cases . 24
4.3 Relating Safety Cases and Hicases 25

4.3.1 Safety Cases as Hicases . 25
4.3.2 Skeleton of a Hicase . 26

4.4 Extending the Core GSN Model . 26
4.5 Viewing the Hierarchy . 27

5 An Implementation-focussed Definition 27
5.1 Hierarchical Extension . 29

6 Implementation 31
6.1 Creating Hierarchical Nodes . 31
6.2 Viewing Hierarchical Details . 31
6.3 Modifying a Hinode . 34

7 Conclusions 34
7.1 Related Work and Concepts . 35

7.1.1 Hiproofs . 35
7.1.2 Safety Case Modules . 35
7.1.3 Hierarchy in Safety Cases 35

7.2 Future Work . 36
7.2.1 Hicases Development . 36
7.2.2 Improving AdvoCATE . 37

2

List of Figures
1 A safety case fragment for the Swift UAV 5
2 Syntax of the GSN notation . 7
3 A fragment of an auto-generated safety case 8
4 Constructing hierarchy as a new abstract evidence node 9
5 Viewing the abstract evidence node as a black-box node 10
6 A safety case fragment, where we can group two strategy applications 11
7 A hierarchical strategy in the Swift safety case 12
8 A hierarchical strategy in the Swift safety case, viewed as a blackbox . 13
9 An argument with two trivial subgoals (‘AP object properly initialised’

and ‘Current, previous, and next waypoints properly defined’), which
can be hidden . 14

10 ‘Boxing up’ the trivial subgoals . 15
11 When the hierarchical strategy is closed, the trivial subgoals are hidden 16
12 Hierarchical groupings for hazard table construction 18
13 Aileron computation structure (white portions) 19
14 Hierarchical presentation of the aileron computation proof 20
15 Presentation of the argument structure of the Swift safety case 21
16 Hierarchical Swift safety case, with only top-level node open 22
17 A presentation of the hierarchy of a safety case 27
18 A hicase with the potential for overlapping hierarchy 30
19 Original safety case in AdvoCATE 32
20 Safety case with hierarchy created 33

3

1 Introduction
A safety case, or more generally an assurance case, is a structured argument, supported
by a body of evidence, which provides a convincing and valid justification that a system
is acceptably safe (or assured) for a given application in a given operating environment.
The development of a safety case has become common practice for the certification of
safety-critical systems in the nuclear, defense, oil and gas, and rail domains. Indeed,
the development and acceptance of a safety case is a key element of safety regulation in
many safety-critical sectors. The Goal Structuring Notation (GSN) is emerging as the
de facto representation for the argument structure of a safety case, representing safety
cases using a “boxes and arrows” approach. Until recently, safety cases were typically
constructed manually, but tools are now emerging to assist (and sometimes automate)
construction of safety cases. The AdvoCATE Assurance Case Editor, developed here
at NASA Ames, is one such tool [5].

Figure 1 shows a small fragment of a safety case for the Swift Unmanned Aircraft
System, which is being developed at NASA Ames [4], as represented in AdvoCATE.
The argument proceeds top-down from the high-level goal that the Swift UAS is safe.
All facets of the argument are explicit, including the assumptions made about a goal
and the contextual information necessary to make sense of the goal. For example this
safety case only justifies safety of the Swift given appropriate weather conditions and
within its defined range of operation. So-called strategies are used to break down high-
level goals into simpler subgoals. Once these subgoals are simple enough, they are
solved by evidence: references to artifacts that guarantee the property.

Necessarily, such diagrams become very large indeed. As an anecdotal example, a
typical safety case for a medium-size North Sea production platform covers anywhere
from 490–660 pages [10]. This makes them difficult to develop, evaluate (or under-
stand), and maintain. Often, the safety case is constructed using design patterns or
has some natural higher-level structure that is clear to the author (if only at the time
of writing), but can become obscured by the detail so it is “hard to see the wood for
the trees”. It is also becoming feasible for some parts of safety cases to be constructed
automatically from external tools such as a theorem prover or sets of hazard and re-
quirement tables [3]. Such safety case fragments often have inherent structure that
could and should be exploited to help comprehension.

Based on these observations, we propose to extend the GSN notation (which we
will simply refer to as safety cases from now on) to include hierarchical structuring
mechanisms. We call the these structures hicases, and claim that they help to clar-
ify the structure of a safety case and improve the quality of the argument. The main
contributions of this work are:

1. A theoretical description of GSN safety cases and an extension to this model for
hierarchical safety cases. In fact, we give two equivalent definitions: one closer
to an implementation.

2. We relate an unfolding of the hicases to an ordinary safety case by means of a
skeleton operation as well as providing a natural embedding of ordinary safety
cases in hicases.

4

Figure 1: A safety case fragment for the Swift UAV

5

3. An implementation of hicases in the AdvoCATE tool, which we use to provide
the hicase examples in this work.

The rest of this report is structured as follows. In Section 2, we introduce the
GSN notation for safety cases in more detail. Then, in Section 3 we give motivating
examples of hierarchy based on the Swift safety case. Then, in Section 4 we give a
formal definition capturing the notion of safety case and extend it to hierarchical safety
cases. We provide alternative definitions in Section 5 and describe our implementation
in Section 6. Finally, we conclude with related and future work in Section 7.

2 Goal Structuring Notation
The Goal Structuring Notation for safety cases, defined in [1], is fast becoming a stan-
dard model for argumentation of safety cases. In this section, we give a brief overview
of GSN, but for a full description, we refer the reader to the standard [1].

Safety cases are documented in a variety of ways, including text and graphical
notations. For the safety case fragments given in this report, we use the Goal Struc-
turing Notation (GSN) [1] for documentation. The elements of the GSN are shown
in Figure 2. Each element represents a specific type of information that is contained
in the safety case. For example, a safety claim, i.e., a goal, is shown using a rectan-
gle. The strategy used to decompose this claim into sub-claims is represented using a
parallelogram, while sub-claims are again represented using rectangles. Assumptions,
justifications and context information are documented in the GSN using rounded rect-
angles and, respectively, they convey the assumptions made, e.g., in stating a claim or
using a strategy, the justifications, e.g., for using a particular strategy, and the context
of relevance, e.g., when making a claim. Evidence is represented using a circle.

Whenever these basic elements1 are either undeveloped, uninstantiated, or both, a
diamond shape, a triangle shape or a diamond shape with a horizontal line, are respec-
tively appended to the relevant element shape as shown in Figure 2. Undeveloped ele-
ments refer to elements which have been identified but not completely developed, i.e.,
it is known to be incomplete. Uninstantiated elements refer to those elements which
have not yet been identified but are known or hypothesized to exist. Elements which
are both undeveloped and uninstantiated serve as placeholders for possible elements
which can be added into the safety case.

A safety case will always be rooted with a top-level goal: most often that the sys-
tem is safe, but it can be useful to relax this condition and consider partial safety cases:
which are sets of safety cases, that still need to be connected and tied down to evi-
dence. We can draw analogies between GSN diagrams and proof trees. Strategies can
be interpreted as tactics or inference rules; evidence nodes can been seen as axiomatic
strategies2. The context, assumption, and justification nodes can really be seen as at-
tributes to goals and strategies. Also, the core GSN standard is very flexible: it doesn’t

1Note that some of the syntactical elements have been recently updated in the GSN, e.g., the notation for
the “Model” has been eliminated.

2The analogy is not complete. Goals in safety cases can, for example, have multiple strategies solving
them independently for extra assurance.

6

<Identifier> Model:

e.g. Hoare style program verification
using specific proof rules

<identifier>: Goal

e.g. the software satisfies all given
requirements

<Identifier> Strategy:

e.g. Argument based on
proof of partial correctness
wrt. the given requirements

<Identifier>: Context

e.g. The software consists of the
following modules 50hz.c, Att.c, VS.c

<Identifier> Constraint:

e.g. Certification works on Source
Level Representation Only

<Identifier>: Assumption

e.g. No requirement is used
as an Assumption

A

<Identifier> Justification:

e.g. SRS Inspection
J

Is solved by

In context of

<Identifier>:
Evidence:

e.g. Axiom
transpose_matrix

<Identifier> Undeveloped
Strategy:

e.g. Argument based on
testing software

<identifier>:
Undeveloped and

Uninstantiated
Goal

<identifier>:
Undeveloped Goal

e.g. Test software for
path coverage

<Identifier>:
Undeveloped

Evidence

e.g. Path Test
Coverage

Figure 2: Syntax of the GSN notation

prescribe many syntactic restrictions and no semantics. In this work, though, we utilise
our definitions to restrict the types of safety case that can be constructed to those that
are sensible. The core GSN standard is then extended with the basic infrastructure for
modules. Safety case modules are similar to their traditional programming language
counterparts and facilitate data-reuse as well as some degree of abstraction. Modules
are compared with our approach in Section 7.1.

3 Examples of Hierarchy
In this section, we present several examples of hierarchical safety cases. Our exam-
ples are derived from the Swift safety case, which we have studied to find motivating
instances of ‘abstractable structure’, which we represent using hierarchical nodes (or
hinodes).

3.1 Abstract Evidence
Example 3.1 (Abstract Evidence). Consider the segment of a safety case taken from
the automatically generated part of the Swift safety case given in Figure 3. This frag-
ment of the safety case is generated using the AutoCert tool [7], and the segment shown
represents a direct proof of a verification condition for a software module in Swift. A
lot of the details of the proof are transformed into the safety case, such as the theorem
prover used, the name of the proof object etc, and we may abstract away from this in
the hierarchical presentation. A hierarchical evidence node can be constructed. In-
side it is the subproof rooted at the AC10 strategy: argument by proof using automated
theorem provers. Since this sub-argument is complete — that is, it has no remaining

7

goals — it could be understood abstractly as an evidence node. The hierarchical rep-
resentation in AdvoCATE is shown in Figure 4 with node H1. We call this the open
view of a hinode. We can view it as a black box — in the closed view — as shown
in Figure 5 where the advantages of abstraction become clear: we have simplified the
representation of the safety case with this presentation. As there are many verification
conditions, we have many instances of this structure; furthermore, we iterate this pro-
cedure up to proof tree, offering opportunities for nested hierarchy. Iterated abstraction
could then greatly reduce the size of the safety case when viewed.

Figure 3: A fragment of an auto-generated safety case

8

Figure 4: Constructing hierarchy as a new abstract evidence node

3.2 Abstract Strategies
If, in the example above, we’d chosen a slice through a safety case where some paths
were not fully enclosed (or that is not fully developed), we would have an abstract
strategy node. The paths not fully embraced within the hinode can then be considered
as the subgoals of this node. A typical use of an abstract strategy is to group together a
meaningful chain of strategy applications. In an analogy with tactical theorem proving,
a composite tactic like INTROS, which applies as many introduction rules to a goal as
possible, could be seen as a hierarchical strategy.

Example 3.2 (Abstract Strategies 1). Consider the safety case fragment (from the mid-
dle of the Swift safety case) in Figure 6. It represents an argument about correctness of
the software system during the descent phase; however, the two strategies arguing this
can be grouped together as a single strategy: ‘Correctness argument over architectural
breakdown’. We can represent this as an abstract strategy, which is shown (in the open
view) in Figure 7. As with abstract evidence, we can also close this node giving us
the safety case in Figure 8. It is important to note that the context, assumption, and
justification nodes are also enclosed within the hierarchical strategy. It would also be
feasible to exclude them (and connect to hinodes), but we decided that the hinodes

9

Figure 5: Viewing the abstract evidence node as a black-box node

would be too cluttered in this view, although we could off this as an option in future
implementations.

Example 3.3 (Abstract Strategies 2). Abstract strategies can also be employed to hide
side-conditions (or trivial subgoals), by fully enclosing particular paths of the safety
case. This gives the developer (or viewer) the flexibility to only concentrate on the
important paths through the safety case during a cursory viewing. If required, the
hierarchical strategies could be opened to view the full detail.

Figure 9 shows a fragment of the Swift safety case, which argues the safety of
the auto-pilot design. The goals N61592954 and N7927263 have been considered by
the developer to be unimportant and, indeed, their justifications have already been ab-
stracted and closed. We wish to abstract this safety case to:

• Hide the unimportant goals within a hierarchical strategy.

• Also group the Strategy S2 to leave us with one outgoing subgoal: ‘the specifi-
cation for computing angle of attack is correct’.

The resulting hicase gives us our first instance of nested hierarchy and is seen in
Figure 10. The advantage of hierarchy for managing the size of safety cases can be
seen when this hierarchical strategy is closed, as in Figure 11. The output goal, G3,
is solved with a deep tree (of which only the first level is shown here) which provides
some evidence for its relative importance compared with the other subgoals.

10

Figure 6: A safety case fragment, where we can group two strategy applications

11

Figure 7: A hierarchical strategy in the Swift safety case

12

Figure 8: A hierarchical strategy in the Swift safety case, viewed as a blackbox

13

Figure 9: An argument with two trivial subgoals (‘AP object properly initialised’ and
‘Current, previous, and next waypoints properly defined’), which can be hidden

14

Figure 10: ‘Boxing up’ the trivial subgoals

15

Figure 11: When the hierarchical strategy is closed, the trivial subgoals are hidden

16

3.3 Abstract Goals
By symmetry of strategies and goals, we have the dual notion of an abstract goal.
In our studies of real-life safety cases, this construct is not as common as abstract
strategies, but nevertheless it can be used to provide a high-level view of the safety case.
As a concrete example, consider this hierarchical ‘chunking’ of a safety case derived
automatically from hazard and requirements tables, Figure 12. We utilise hierarchical
goals to group the functional requirements.

3.4 Case Studies
We have also performed case studies introducing structure on the full Swift safety
case. In particular, we have utilised hinodes to make clear the structure of a detailed
proof generated by AutoCert and make the argument structure of the Swift safety case
explicitly using hinodes. We describe both in the following sections.

3.4.1 Aileron Correctness Proof

The AutoCert tool produced a very detailed proof of the correctness property of the
aileron control sequence in the autopilot. The proof proceeds by proving correct the
individual computations that are performed in controlling the aileron. The computation
structure is shown in Figure 13. Previously, the proof was very detailed and unreadable
for humans. However, we were able to use hinodes to hide the trivial side-conditions
and make clear the architecture of the proof. We show the top fragment of the resulting
hicase in Figure 14. The goal AC1 represents proving the correctness of the Aileron
control computed variable in Figure 13. This is because the AutoCert proof is a back-
wards proof common in automated theorem proving, where the stated goal is broken
into simpler sub-goals. The hierarchical strategy H16 performs this decomposition,
leaving a single output goal AC98, which states that we have to prove the desired roll
variable is correct (the next goal up in the computation structure) and so the high-level
proof continues with the next goal corresponding to the desired heading variable. For
an expert familiar with the system, the hierarchical safety case makes it clearer that this
sequence of computations is correct.

3.4.2 Swift High-level Structure

If we look at Figure 15, we see that it has a natural high-level structure. First the ar-
gument proceeds by looking at the various sub-systems of Swift: the ground station,
the aircraft etc. Then, by arguing over the phases of operation, such as Taxi, Cruise,
Descent etc. For large safety cases, this inherent structure can become almost com-
pletely obscured by the detail in the safety case; however, we have experimented with
hicases and discovered that it can be made clear through the addition of hinodes. As an
example, Figure 16 shows the hierarchical safety case that we constructed to show the
high-level structure. The hierarchical evidence node, H56, details the proof technique
and encloses the rest of the safety case. Then, each of H3–H6, represent the hierar-
chical evidence nodes that contain the proofs of safety for each individual system. The
hierarchical structure keeps the high-level structure visible.

17

Figure 12: Hierarchical groupings for hazard table construction

18

Aileron control
(m_aileron_m1p1)

Desired Heading
(PID.m_desiredHeading_rad)

Current Heading
(AD.m_heading_rad)

Desired Roll
(PID.m_desiredRoll_rad)

Current Roll
(AD.m_roll_rad)

Key: (variable name)
PID = m_pidTarget

AD = AircraftData

Source Waypoint
(srcWpPos)

CrossTrack Error
(PID.m_currentXTrackErr_rad)

CrossTrack Delta Heading
(PID.m_xtracksignal_deltaheading)

Destination Waypoint
(dstWpPos) Current Position

(CurrACPos)

Line Slope for Xtrack
(M)

Line Intercept For
Xtrack (B)

Current to Destination
Vector (lineAC2Ds)

Source to Destination
Vector (lineSc2Ds)

Input
variables

Computed
variables

Figure 13: Aileron computation structure (white portions)

19

Figure 14: Hierarchical presentation of the aileron computation proof

20

Subsystems / Components Interactions

Evidence Evidence Evidence Evidence

Safety Claim

Evidence

Drift outside range-safety area,
Autopilot failure

GSC, UAV, Comm.

Taxi, Take-off, Cruise, Survey,
Return-Cruise, Descent, Land

Autopilot, Actuators,
Sensors, …

Correct angle
of attack

Correct PID values

Proof Calibration Review

System Organization

Relevant Hazards

Sub-claims Sub-claims Sub-claims Sub-claims

Operating Phases

Figure 15: Presentation of the argument structure of the Swift safety case

3.5 Non-examples of Abstraction
There are restrictions on what can be abstracted inside a hinode. Firstly, to preserve
the well-formedness of safety cases we need to ensure that the input and output node
types are consistent. For example, a hierarchical strategy, like in Figure 7, must have
a goal as an incoming node and goals as outgoing nodes, just like an ordinary strategy.
We do not currently allow so-called strategicals, which would mix the types of input
and output, although we may in future relax this restriction to allow for more compact
hicases (since we can hide more contiguous chains).

Furthermore, we cannot abstract disconnected fragments of a safety case as there
would be no path from the input goal to all the outputs. It is important to note that this
restriction does not force each hinode to have only one input. The disconnectedness is
with respect to the input, so multiple connections can enter a hinode3.

Finally, we make the design decision to place any context, justification, and as-
sumption nodes inside the hierarchical safety case, thus hinodes cannot have IsCon-
textOf links connected to them.

3.6 Summary
In this section, we have demonstrated informally where hierarchy can be introduced
and motivated the benefits. In summary, we have three different hinodes:

• Hierarchical strategies: abstracting a chain of related strategy applications.

3This property, desirable for a hierarchical node, is actually banned for non-hierarchical nodes in our
formal definitions (to follow); however, we believe that it makes sense for hierarchical strategies to combine
‘in parallel’.

21

Figure 16: Hierarchical Swift safety case, with only top-level node open

22

• Hierarchical evidence: abstracting a fully developed chain of related strategy
applications.

• Hierarchical goals: abstracting a chain of goals.

Hierarchical strategies and evidence have been implemented in AdvoCATE and
hierarchical goals will in the near future. Hierarchical nodes are currently constructed
manually in AdvoCATE by choosing the input and outputs for a particular node. If no
output is that entire path is enclosed in the hinode. This approach ensure there is no
ambiguity about the limits of the hinode. Although hinode construction is done by the
user at present, we note that, especially in Example 3.1, the hierarchical presentations
can be constructed automatically by any tool that is generating the safety case fragment.
We would like to extend our safety case generation tools to automatically construct
hinodes at appropriate locations. In the next section, we formalise the intuitions that
we have given in this section.

4 Safety Cases
In this section, we give a mathematical account of standard safety cases and hierarchi-
cal safety cases by representing them formally as labelled tree — where the labelling
function distinguishes the types of nodes — subject to some intuitive well-formedness
conditions. In fact, we give definitions for a partial safety case4 which can represent a
safety case that is under construction.

4.1 Safety Cases
Definition 4.1 (Partial Safety Case). A partial safety case is a triple 〈N, l,→〉, consist-
ing of nodes, a labelling function, and a connector relation, respectively. The labelling
function l : N → {s, g, e, a, j, c} gives the type of the node in the safety case. The
connector relation is defined on nodes: →: 〈N,N〉. We define the transitive closure,
→∗: 〈N,N〉, in the usual way. We require the connector relation to form a finite forest
with the operation isrootN (r) checking if the node r is a root in some tree5. Further-
more, the following conditions must be met:

1. Each part of the partial safety case is rooted by a goal isrootN (r) ⇒ l(r) = g .

2. Arrows only leave strategies or goals: if n → m, then l(n) ∈ {s, g}.

3. Strategies cannot connect to other strategies or evidence: if n → m and l(n) = s,
then l(m) ∈ {g, a, j, c}.

4. Goals cannot connect to other goals: if n → m and l(n) = g, then l(m) ∈
{s, e, a, j, c}.

4Corresponding to the core GSN model.
5Safety cases are the case where we have a single root.

23

By virtue of forming a tree, we ensure that nodes cannot connect to themselves, that
there are no cycles and, finally, that two nodes cannot connect to the same child
node6. Additionally, we see that the GSN standard’s requirement of two arrow-types
(IsSolvedBy and InContextOf) has no semantic content, but rather provides an infor-
mational role.

Definition 4.2 (A goal-strategy restriction). The safety case 〈N ′, l�N′ ,→�N′ 〉 is a goal-
strategy restriction of 〈N, l,→〉 where N ′ = {n |n ∈ N and l(n) ∈ {s, g, e}}.

That is, we remove the context, justification, and assumption elements. By definition,
these nodes are always leaves and alternatively could be understood as attributes of the
strategy and goal nodes. We also say that a (total, i.e., unique root) safety case is fully
developed if, for every goal n i.e., l(n) = g, we have g →∗ n′, with l(n′) = e. That is,
all paths lead to evidence.

4.2 Hierarchical Safety Cases
We define partial hierarchical safety cases, hicases, extend this model with an addi-
tional relation representing the hierarchical structure. We’ll represent it as a partial
order symbol ≤ where n < n′ means that the node n is inside n′. We wish to define
hicases in such a way that we can always unfold all the hierarchy to regain an ordinary
safety case. Thus:

Definition 4.3 (Hicases). A partial hierarchical safety case is a tuple 〈N, l,→,≤〉.
The set of nodes and labelling function are as above. The forest 〈N,→〉 is subject to
the same conditions as Definition 4.1. The hierarchical relation fulfills the axioms of a
partial order and can thus also be viewed alongside N as a forest. Finally, we impose
conditions on the interaction between the two relations:

1. If v is a local root (using →) of a higher-level node w (i.e., v < w), then

l(w) =

g if l(v) = g ∧ ∀v′ v′′. (v′ < w ∧ v′ → v′′ ∧ v′′ ≮ w) ⇒ l(v′′) = s

s if l(v) = s ∧
(∀v′ v′′. (v′ < w ∧ v′ → v′′ ∧ v′′ ≮ w) ⇒ l(v′′) = g
∨ subtree rooted at v is not fully developed)

e if l(v) = s ∧
(@v′ v′′. (v′ < w ∧ v′′ ≮ w ∧ v′ → v′′)
∧ subtree rooted at v is fully developed)

6This last condition (two nodes can’t have the same child) is actually a restriction of the GSN standard,
which doesn’t explicitly disallow this, but we believe this to be reasonable property to have. The AdvoCATE
tool doesn’t currently support this restriction: in Figure 12, we see, for example, a goal with two incoming
strategies.

24

That is:

• A hierarchical goal node must be rooted by a goal and any nodes immedi-
ately outside the hierarchical goal must be strategy nodes.

• A hierarchical strategy must be rooted by a strategy and either a) any nodes
immediately outside the hierarchical strategy must be goals; or, b) the sub-
tree rooted at v inside is not fully developed. The latter case catches the
possibility that there are no outgoing goals, but the node is not evidence.

• A hierarchical evidence node is the special case of a hierarchical strategy
with no outgoing goals, but where the subtree rooted at v is fully developed.

2. The connectors will target the outer nodes: v → w1 and w1 < w2 then v < w2.

3. Connectors come from inner nodes: if v → w1 and w1 ≤ w2 then v = w1.

4. Hierarchy and connection are mutually exclusive: v ≤ w and v →∗ w means
v = w.

5. two nodes which both at the top level (or immediately included in some node)
means at most one has no incoming → edge. That is:

siblingsi(v1, v2) ∧ isroots(v1) ∧ isroots(v2) =⇒ v1 = v2.

The first condition above formalises our intuition that a hierarchical strategy must
take goals as an input and return goals as an output (possibly in the form of a non-
fully developed tree), hierarchical evidence must have no outputs and enclose a fully-
developed safety case, and hierarchical goals must take strategies as inputs and outputs.
We phrase it in terms of the immediately enclosed items: that they must be of the same
type as the hinode. Hierarchical evidence is subject to stricter conditions: it must not
have any outputs and the safety case it encloses must be fully developed. We can view
abstract evidence as an abstract strategy without outgoing goals just as evidence is an
axiomatic strategy.

The latter conditions (2–5)7, are designed to produce a mapping from a hierarchical
safety case to its ordinary safety case unfolding: its skeleton. We show below that
safety cases can be viewed as (trivial) hicases and that the skeleton operation unfolds
into an ordinary safety case

4.3 Relating Safety Cases and Hicases
4.3.1 Safety Cases as Hicases

Before defining the more complex transformation of a hicase into its skeleton we briefly
note that a safety case 〈N, l,→〉 can be mapped to a hicase 〈N, l,→, idV 〉 where idV

is the trivial partial order with only reflexive pairs. This ordering trivially satisfies all
the well-formedness properties of a hicase.

7These are identical to the well-formedness conditions for Hierarchical Proofs (or hiproofs) that inspired
this work [8]. For more discussion about hiproofs, see Section 7.1.1.

25

4.3.2 Skeleton of a Hicase

We define an operation sk, mapping hicases into ordinary safety cases and show that
the tuple it constructs is indeed well-formed w.r.t the safety case conditions.

Theorem 1 (Skeleton). The operation sk which maps a hierarchical safety case
〈N, l,→,≤〉 to 〈N ′, l′,→′〉, where N ′ is the set of leaves of ≤, l′ is the restriction of
the labelling function l, and v1 →′ v2 iff ∃w ∈ N such that v2 ≤ w and v1 → w maps
a well-formed hierarchical safety case to an ordinary safety case.

Proof sketch. The relationship between Hiproofs and Hicases (as well as the cor-
responding relationship between safety cases and proofs) allows us to claim that the
mapping constructs the appropriate forest structure on 〈N ′,→′〉. We simply need to
show that the well-formedness conditions 2–4 of Definition 4.1. Condition 2, for ex-
ample, (if v1 → v2 then l(v1) ∈ {s, g, e}) comes for free since if v1 → w then it
already has this property for v1 →′ v2.

4.4 Extending the Core GSN Model
As discussed in Section 2, the core GSN model is often extended with entity abstraction
annotations — which can state if a node is undeveloped or uninstantiated — and with
patterns and modules8. Additionally, the AdvoCATE tool extends the GSN node notion
to include some meta-data about risk, whether the property is a high-level or low-level
requirement etc which can, for example, influence the colour of a node. Our core
definition of a safety case can be extended to store this detail by considering our node
set N as a record, with various projections. As an example, here we simply implement
the entity abstractions, with predicates: isundev(N) and isuninst(N)9.

Our interest in these extensions comes from their interaction with the hierarchi-
cal structure: the hinodes must also have a developed and instantiated attribute and
it must be consistent with its contents. We ensure this consistency by providing well-
formedness rules connecting the hinode property and its child properties. However,
since we do not want to fix the attributes available, we instead give schemas for con-
sistency rules. The general structure is as follows:

fp(v1, . . . , vn, n)
p(n)

vi < n

By this, we mean that a property holds (or has a particular value) if a function of
it and it all the contained nodes also has that value. We illustrate this schema with the
undeveloped property:

(undev(v1) ∧ l(v1) = l(n)) ∨ . . . ∨ (undev(vn) ∧ l(vn) = l(n))
undev(n)

vi < n

8In fact, the undeveloped entity abstraction is part of the core GSN, but we didn’t include it in our original
definition for simplicity.

9We are cheating a little. Technically, only goals, strategies, and evidence can be abstracted. We assume
that contexts, assumptions, and justifications always have these predicates false.

26

That is, a hinode is undeveloped if any of its contained nodes (of the same type) are
also undeveloped.

4.5 Viewing the Hierarchy
It can also be useful to view the hierarchical relation as a tree in its own right. This
presentation makes explicit the nesting structure of the individual hinodes: which hin-
ode is enclosed by which other hinode. Figure 17 shows an example of this hierarchy
tree for the hicase in Figure 10. The definition of the hierarchy tree is simply a pair
〈N,≤�¬leaf

〉. That is, all the nodes in the hierarchy that are not leaves. This is precisely
the hinodes as no other types of nodes are allowed to contain elements.

Figure 17: A presentation of the hierarchy of a safety case

5 An Implementation-focussed Definition
We have implemented hicases in AdvoCATE, which was designed using a different, but
equivalent, definition of a safety case10. Assuming that we have finite, disjoint sets of
goals (G), strategies (S), evidence (E), assumptions (A), justifications (J) and, contexts
(K), we give the following definition.

10This is a slightly revised definition to that given in [3]. We have restricted each goal/strategy to have one
input strategy/goal and generalised what can be attached to goals to also include assumptions and justifica-
tions.

27

Definition 5.1 (Partial Safety Case: Type 2). A partial safety case, G, is a tuple

〈G, S,E, A, J,K, sg, gs, gc, ga, gj, sa, sc, sj〉

with the functions:

• sg : S → P(G), the subgoals of a strategy;

• gs : G → P(S ∪ E), the strategies and/or evidence of a goal;

• gc : G → P(K), the contexts of a goal;

• ga : S → P(A), the assumptions of a goal;

• gj : S → P(J), the justifications of a goal;

• sa : S → P(A), the assumptions of a strategy;

• sj : S → P(J), the justifications of a strategy;

• sc : S → P(K), the contexts of a strategy.

With the properties:

• Each goal has only one input strategy. That is, for every g ∈ G if g ∈ sg(s) and
g ∈ sg(s′) then s = s′.

• Each strategy has only one input goal. That is, for every s ∈ S if s ∈ gs(g) and
s ∈ gs(g′) then g = g′.

We say that g′ is a subgoal of g whenever there exists an s ∈ gs(g) such that
g′ ∈ sg(s). We can then define the descendant goal relation, g → g′ off g′ is a subgoal
of g or there is a goal g′′ such that g → g′′ and g′ is a subgoal of g′′. We require that
the → relation is a DAG with roots R. We define a similar relation for sub-strategies,
including evidence as an axiomatic strategy. For simplicity, we overload the same
symbol.

Translating Between Definitions. We can define a mapping from safety cases (which
we will call type-1 safety cases) to type-2 safety cases and vice versa. This mapping
has the property that it preserves node connections and well-formedness conditions for
either definition. Informally, we can map a safety case of type-2 to a safety case by
collapsing the node sets and constructing the labelling function in the obvious way: if
n ∈ G in the type-2 safety case, then l(n) = g in the type-1 safety case. We con-
struct the connector relation by flattening the target power sets for each function. The
resulting structure satisfies the properties in Definition 4.1.

In the other direction, we can translate a type-2 safety case to a type-1 safety case
by means of a partition of the node set N using the labelling function. We can then con-
struct each mapping function by partitioning the connector, again using the labelling
function.

28

5.1 Hierarchical Extension
Formally, we extend the type-2 description of a safety case to include a set H of hin-
odes, finite and disjoint from the other node types. Thus, we extend a safety case as
follows11:

Definition 5.2 (Hierarchical Safety Case). A partial hierarchical safety case, G, is a
tuple:

〈G, S,E, A, J,K, H, sg, gs, gc, ga, gj, sa, sc, sj, hi, ho〉,
extending hicases with the additional functions:

• hi : H → G, the input goal of a hinode;

• ho : H → P(G), the set of output goals of a hinode.

We ensure that the following properties about the hierarchical links hold:

1. Inputs and outputs are connected: ∀ h ∈ H , if gout ∈ ho(h) and hi(h) =
gin then gin → gout.

2. Outputs are disconnected: ∀g1, g2 ∈ ho(h), g1 → g2 ⇒ g1 = g2.

3. Hinodes cannot overlap: if h1, h2 ∈ H and hi(h1) → hi(h2) then for every
g ∈ ho(h1) such that hi(h2) → g we must have g′ ∈ ho(h2) such that g′ → gh1 .
We say h1 encloses h2.

4. Additionally, if hi(h1) = hi(h2) then either for every g ∈ ho(h1) there is a
g′ ∈ ho(h2) such that g′ → g or for every g ∈ ho(h2) there is a g′ ∈ ho(h1)
such that g′ → g. That is, one must wholly enclose the other.

Note that the complicated property about overlapping comes for free in our partial
order version of this definition. Intuitively, the overlap property basically says that
every pair of hinodes must either be independent or any interaction must be a complete
nesting. For example, in Figure 18, we cannot construct a hinode containing S2 and
S3 only, because that would break the overlap property since that hinode, let’s call it
H2, would require hi(H2) = G2 and ho(H2) = {G4}. However, since G1 → G2
and ho(H1) = G3 and hi(H2) → G3, we trigger the condition so we must have an
element, g, of ho(H2) such that g → G3, but this is not the case as the only output of
H2 is G4. Graphically, we see that this would mean the hinodes would intersect.

We highlight two special cases of hicases:

• When ho(h) = {} and the hicase rooted at hi(h) is fully developed, the hier-
archical strategy becomes a hierarchical evidence node. That is, it encompasses
the rest of the safety case tree rooted at hi(h). If it is not fully developed, then it
is still a hierarchical strategy.

• For a hierarchical strategy h, with hi(h) = g and

ho(h) = {g′ | g′ is a subgoal of g }

the hierarchical strategy is degenerate. It only covers one strategy.
11Note that this (preliminary) definition does not account for hierarchical goals, but these can be added

similarly to Definition 4.3.

29

Figure 18: A hicase with the potential for overlapping hierarchy

30

6 Implementation
We have implemented hicases in AdvoCATE, providing basic features for construct-
ing, modifying, and viewing hinodes. For a complete description of the features of
AdvoCATE, we refer the reader to [5]. The main hierarchical features provided are:

• The ability to modify an existing safety case to add hierarchical structure;

• Two ways to view hierarchical objects: an open and closed view12;

• The ability to modify the contents of a hierarchical safety case: abstracting more
or less of the safety case;

• The ability to view a tree representation of the hierarchical structure.

In this section, we show how each of these features can be used, based on a simple
safety case, which we have constructed as an exemplar, given in Figure 19. It is fully
developed and the root goal is G1. First the strategy S1 breaks G1 into two simpler
goals: G2 and G3. G3 is solved directly using an evidence node (E1) and G2 requires
an additional strategy application.

6.1 Creating Hierarchical Nodes
In order to create a hierarchical node, the user will select the goals (in the case of
constructing a hierarchical strategy) that they wish to delimit the hinode from outside.
Once selected, the user can use the ‘Abstract Nodes’ feature to construct the hinode.
The selected nodes are used to construct the hi and ho functions in Definition 5.2. The
set of nodes is analysed to ensure that:

• One node is suitable as an input: that is, there is a path from it to all other nodes;

• All the other nodes (the outputs) are disconnected;

• This new hinode will not overlap with any pre-existing strategies.

Once the well-formedness checks are performed, the node is created in the open
view, with no description and coloured green by default. The user can then click to
add a meaningful name to the hinode. If, for example, the user selected G1 and G4 as
the delimiting goals, then the resulting safety case is shown in Figure 20. Note, that
in accordance with the interpretation the non-selected path is completely enclosed. In
this open view, all the details of the safety case are seen within a hierarchical box.

6.2 Viewing Hierarchical Details
The default view for a hinode is called the open view. In this view we display both the
hinode and its contents, with incoming links going directly to and from the enclosed
nodes. We offer one core additional view: the closed view, which is where all the
contained nodes are hidden and the only links shown are the hierarchical links. It is

12Actually in the implementation we provide three, but only two are available in the interface.

31

Figure 19: Original safety case in AdvoCATE

32

Figure 20: Safety case with hierarchy created

33

in this view that we see the advantages of hierarchical structure: since the resulting
diagram contains fewer visible elements, it becomes easier to view. Additionally, there
is also a view that we call the flat representation of a hierarchical node. This view can
be considered as the raw representation of the definition: with both hierarchical links
and non-hierarchical links visible.

Nested hierarchical nodes will be visible only when their parent hinode is in the
open state and nested hinodes have their states preserved when a parent hinode is mod-
ified. Since the opening and closing of hinodes affects their size and shape, the sys-
tem will automatically re-layout the changed parts of the diagram. This is necessary,
particularly when the diagram becomes large, in order to ensure that nodes are not
accidentally hidden.

6.3 Modifying a Hinode
Once a hinode has been created, we may wish to change its contents. It can be modified
in three atomic ways13:

• We can delete it entirely;

• We can enclose less;

• We can enclose more.

We provide a delete operation for hinodes, which will remove the hinode and place
all its contents at the level directly below (which is where they would have been had
the hinode being deleted not existed).

In order to change the contents of a hinode, we need to change either the input goal
or the set of output goals. We have not yet implemented this behaviour but it is expected
that the user can click and drag goals in and out of a hinode. The tool will then calculate
whether such a move is legal (preserving the well-formedness conditions for hicases)
and perform the change. As a simple example: consider the hicase in Figure 20. If we
wanted to remove G3 and E1 from the hinode H2, we could click and drag G3 outside
the hinode.

7 Conclusions
In this report, we have introduce hierarchical safety cases as an approach to help im-
prove maintainability, understandability, and checking of safety cases. We first moti-
vated the work with examples derived from real safety cases then gave a theoretical
account of the GSN notation for safety cases before extending it with a hierarchical
interpretation. We then described our prototype implementation of hierarchical safety
cases in the AdvoCATE safety case editor. In this section, we highlight some important
related work and hint at directions for future development of our work.

13Note that only the delete fragment is fully implemented at present.

34

7.1 Related Work and Concepts
7.1.1 Hiproofs

Hiproofs, introduced in [8], are the immediate inspiration for hicases. In particular,
we follow the hiproof notation for the graphical representation of hierarchical nodes.
Hiproofs could be viewed as a more general model (for hierarchical trees) than safety
cases, without the particular node typing present in hicases. An alternative under-
standing would be to consider a hiproof as the strategy/evidence subset of the hicases
representation (where goals flow is represented by the connections). Hiproofs are sim-
plifications of proof trees in real-life systems (which often consist of meta-data), being
intended for theoretical study of proof systems. This contrasts slightly from our ap-
proach as we also attempt to account for meta-data in our definitions.

7.1.2 Safety Case Modules

Safety cases have a built-in module system, which is described in [1, 9]. As in pro-
gramming languages, the module system is designed to allow reuse as well as limiting
the changes required to the safety case when a particular aspect of the underlying sys-
tem is changed. Part of the motivation for safety case modules lies in the movement in
industry towards more modular systems. Safety case modules are designed to naturally
represent modular systems. Modular safety cases can be easier to understand and jus-
tifiably add some hierarchical structure to a safety case, so we offer a comparison here.
We must be clear, though, that we do not claim to subsume the features of modules
with hicases; rather, we see these as being complementary.

A closed hierarchical goal can mimic the appearance of an away goal reference
(and many of them); however, there is an important difference: the away objects are
simply references to a separate safety case fragment; whereas, for hierarchical goals,
it is simply an additional node enclosing structure that is there (and is also repeated if
existing more than once in a safety case). Additionally, hicases offer the notion of a
hierarchical strategy — an enclosure of (possibly) a complex (unfinished) safety case
fragment — which does not have an equivalent notion in the module system. Modules,
however, cannot be nested in the way that hicases can, thus offering only one abstract
view. Additionally, one can see the module system as working at a larger level: a
module is typically a large segment of a safety case, but we view hinodes as being
viable at all scales. Modules also have informal contracts that they must fulfill to be
well-formed, but hinodes do not enforce any semantic properties.

7.1.3 Hierarchy in Safety Cases

Hierarchical safety cases have been proposed before, in [11], where Stone proposed
and built a hierarchical presentation of a safety case for a frigate upgrade. In this safety
case, hierarchy was represented simply by indentation in the spreadsheet safety case
and showed the basic hierarchical decomposition of the safety case: arguing over sub-
systems, hazards etc. In our terminology, we would say they can only construct abstract
evidence. Their tool doesn’t offer the flexibility of abstraction given by abstract strate-
gies. In fact, Denney et al. have also presented a tabular formulation of safety cases

35

in [6] and it would be interesting to see if we could extend it to represent hierarchical
safety cases.

7.2 Future Work
We address the avenues for future work in the theoretical account of safety cases and
in further development of AdvoCATE separately.

7.2.1 Hicases Development

There are a few possible threads for future development:

Extending the Hicases Definitions Our current definition for safety cases and hi-
cases only accounts for the core GSN language and potential meta-data extensions.
Most safety cases in practice make use of either (or all) of the modular extension to
safety cases and the pattern language for safety cases. We would like to give an ac-
count for each of these within our model. The module language, in particular, would
require careful thought to ensure no inconsistencies are introduced. Additionally, we
would like to further explore our definitions for hicases and formally relate the two
hierarchical definitions that we currently have14. A detailed account of the skeleton
operation is also required.

We have not carefully considered assumptions and contextual nodes. Checking the
consistency of assumptions and contexts is an important part of (manually) verifying
a safety case. This can be a difficult and confusing task, particularly with large safety
cases, since assumptions and contexts for a goal are inherited from their parents. It
would be fruitful to provide a clear understanding to these notions. In particular, we
could formalise contexts, which will allow us to transform contexts/assumptions. One
possibility is to provide a formal logic (propositional should be expressive enough)
for writing assumptions, then giving some logical rules describing how context and
assumption lists are propagated.

We would also like to investigate the formal notion of a hicase view: a slice through
the hierarchy which is actually a normal safety case; and, refinement of hicases: pro-
viding a mathematical meaning for well-formed changes to the hicase. Both of these
exist informally in the implementation and it is important to capture it formally.

Hierarchy Construction via Patterns Safety cases are often developed for patterns:
commonly used specifications for safety case fragments. Given input data — from
a requirements table, for example — the pattern can be instantiated to a safety case
fragment. We can extend the safety case pattern language to also contain hierarchical
constructs. In particular, we can contain the whole pattern in a hierarchical structure.
For example, this pattern can be enclosed in a hierarchical goal structure that explains
that this section of the safety case provides the hazard decomposition. In this way, the
hierarchy can be seen as providing a record of pattern instantiation.

14We believe them to be equivalent, but have not yet proved it.

36

We would like to give an account for pattern instantiation. One interesting possi-
bility is to provide a term language for writing patterns. These terms, when applied to
an input could evaluate (possibly partially) to construct safety cases. This approach is
loosely analogous to writing tactics to construct proof trees and we could look to the
hitac tactic language for hierarchical proofs [2].

Extending Existing Safety Case Tools We plan to extend our existing tools for auto-
matically constructing safety cases so that they can construct hierarchical safety cases.
For example, we could extend the AutoCert tool to construct a hicase like we presented
in Section 3.4. Denney et al. also developed a tool for constructing safety cases from
sets of hazards and requirements tables [3]. Again, this tool could be usefully extended
to construct hicases.

Utilising Meta-data for Hierarchical Presentation An example application of hi-
erarchy is to give a method to highlight different technical regions of a safety case. For
example, we could specify an argument, within an abstract strategy or goal, as requiring
an avionics expert to verify correctness of the argument. The EGSN model, however,
has a concept of meta-data which can be used to annotate nodes. We plan to investigate
in the future what potential consequences for hierarchy this can have. It can certainly
help deal with regions requiring an expert verification. Additionally, meta-data could
help provide information for a Google maps-style view of a safety case: where major
goals (cities) are visible when zoomed out and gradually more detail is fleshed out15.

7.2.2 Improving AdvoCATE

There are many interesting avenues for future development of the AdvoCATE tool:
our prototype implementation has really only scratched the surface. Here, we confine
ourselves to the developments specifically related to hierarchy. Most immediately re-
quired are interface modifications (and the required changes will become clear with
use) to improve the users experience with hierarchical proof. Currently, for example,
the laying out algorithm does not behave optimally for presenting hierarchical nodes
and (minimal) manual adjustment is typically required.

Firstly, we wish to utilise the meta-data that is central to the system. Currently,
hinodes can be manually annotated, but we would like to be able to derive this data
from the enclosed elements. For example, we can mark a hinode as uninstantiated if
any of its elements are uninstantiated. Secondly, we would like to utilise AdvoCATE’s
transformation system, described in [5], to collect information about hierarchy and
possibly learn potential hierarchical structure. For example, one might be able to notice
and abstract patterns from existing safety cases. Finally, we would like to implement
the hierarchical patterns that have been discussed above.

15Buggy versions of this may be known as the Apple Maps view.

37

References
[1] GSN community standard version 1. Technical report, Origin Consulting (York)

Limited, 2011.

[2] David Aspinall, Ewen Denney, and Christoph Lüth. A tactic language for
hiproofs. In Proceedings of the 9th AISC International Conference, the 15th
Calculemus Symposium, and the 7th International MKM Conference on Intelli-
gent Computer Mathematics, pages 339–354, Berlin, Heidelberg, 2008. Springer-
Verlag.

[3] Ewen Denney and Ganesh Pai. A lightweight methodology for safety case as-
sembly. In Frank Ortmeier and Peter Daniel, editors, SAFECOMP, volume 7612
of Lecture Notes in Computer Science, pages 1–12. Springer, 2012.

[4] Ewen Denney, Ganesh Pai, and Ibrahim Habli. Perspectives on software safety
case development for unmanned aircraft. In Robert S. Swarz, Philip Koopman,
and Michel Cukier, editors, DSN, pages 1–8. IEEE Computer Society, 2012.

[5] Ewen Denney, Ganesh Pai, and Josef Pohl. AdvoCATE: An assurance case au-
tomation toolset. In Frank Ortmeier and Peter Daniel, editors, SAFECOMP Work-
shops, volume 7613 of Lecture Notes in Computer Science, pages 8–21. Springer,
2012.

[6] Ewen Denney, Ganesh Pai, and Josef Pohl. Formal verification methodology
for automated construction of software safety cases. AFCS Milestone Report
SSAT.1.3.VVFCS.4.05V.4.SI.12.03, NASA Ames Research Center, Apr. 2012.

[7] Ewen Denney, Ganesh Pai, and Josef Pohl. Heterogeneous aviation safety cases:
Integrating the formal and the non-formal. In 17th IEEE International Confer-
ence on Engineering of Complex Computer Systems (ICECCS), Paris, France, Jul.
2012.

[8] Ewen Denney, John Power, and Konstantinos Tourlas. Hiproofs: A hierarchical
notion of proof tree. Electr. Notes Theor. Comput. Sci., 155:341–359, 2006.

[9] Tim Kelly. Concepts and principles of compositional safety case construction.
Technical Report COMSA/2001/1/1, University of York, 2001.

[10] Kevin Kinsella. UK offshore safety lessons learned. ERM Risk Practice. SPE
Seminar, Houston, TX, 2010.

[11] Gordon Stone. On arguing the safety of large systems. In Tenth Australian Work-
shop on Safety-Related Programmable Systems, volume 162 of ACM Interna-
tional Conference Proceeding Series, pages 69–75, 2006.

38

