Skip to main content

SMT-Based Analysis of Biological Computation

  • Conference paper
NASA Formal Methods (NFM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7871))

Included in the following conference series:

Abstract

Synthetic biology focuses on the re-engineering of living organisms for useful purposes while DNA computing targets the construction of therapeutics and computational circuits directly from DNA strands. The complexity of biological systems is a major engineering challenge and their modeling relies on a number of diverse formalisms. Moreover, many applications are “mission-critical” (e.g. as recognized by NASA’s Synthetic Biology Initiative) and require robustness which is difficult to obtain. The ability to formally specify desired behavior and perform automated computational analysis of system models can help address these challenges, but today there are no unifying scalable analysis frameworks capable of dealing with this complexity.

In this work, we study pertinent problems and modeling formalisms for DNA computing and synthetic biology and describe how they can be formalized and encoded to allow analysis using Satisfiability Modulo Theories (SMT). This work highlights biological engineering as a domain that can benefit extensively from the application of formal methods. It provides a step towards the use of such methods in computational design frameworks for biology and is part of a more general effort towards the formalization of biology and the study of biological computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Satisfiability modulo theories competition, http://www.smtcomp.org/2012/

  2. Z34bio at rise4fun - software engineering tools from MSR (2012), http://rise4fun.com/z34biology

  3. Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)

    Article  Google Scholar 

  4. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429(6990), 423–429 (2004)

    Article  Google Scholar 

  5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biomolecular interaction networks. Theoretical Computer Science 325(1), 25–44 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature review. Journal of Computational Biology 9(1), 67–103 (2002)

    Article  Google Scholar 

  8. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Fränzle, M., Hermanns, H., Teige, T.: Stochastic satisfiability modulo theory: A novel technique for the analysis of probabilistic hybrid systems. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 172–186. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs. SIGPLAN Not. 46, 62–73 (2011)

    Article  Google Scholar 

  11. Heiner, M., Gilbert, D., Donaldson, R.: Petri Nets for Systems and Synthetic Biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Horn, F., Jackson, R.: General mass action kinetics. Archive for Rational Mechanics and Analysis 47(2) (1972)

    Google Scholar 

  13. Jovanović, D., de Moura, L.: Solving Non-linear Arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Lakin, M.R., Phillips, A.: Modelling, simulating and verifying turing-powerful strand displacement systems. In: Cardelli, L., Shih, W. (eds.) DNA 17. LNCS, vol. 6937, pp. 130–144. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Lakin, M.R., Parker, D., Cardelli, L., Kwiatkowska, M., Phillips, A.: Design and analysis of DNA strand displacement devices using probabilistic model checking. Journal of the Royal Society, Interface 9(72), 1470–1485 (2012)

    Article  Google Scholar 

  16. Lakin, M.R., Youssef, S., Polo, F., Emmott, S., Phillips, A.: Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics 27(22), 3211–3213 (2011)

    Article  Google Scholar 

  17. Langhoff, S., Rothschild, L., Cumbers, J., Paavola, C., Worden, P.: Workshop Report on What are the Potential Roles for Synthetic Biology in NASA’s Mission? Technical report (2012)

    Google Scholar 

  18. Milicevic, A., Kugler, H.: Model checking using SMT and theory of lists. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 282–297. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Pedersen, M., Phillips, A.: Towards programming languages for genetic engineering of living cells. J. R. Soc. Interface 6(suppl. 4), S437–S450 (2009)

    Google Scholar 

  20. Phillips, A., Cardelli, L.: A programming language for composable DNA circuits. Journal of the Royal Society, Interface 6(suppl. 4), S419–S436 (2009)

    Google Scholar 

  21. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science (FOCS 1977), pp. 46–57. IEEE (1977)

    Google Scholar 

  22. Purnick, P.E., Weiss, R.: The second wave of synthetic biology: from modules to systems. Nature Reviews. Molecular Cell Biology 10(6) (2009)

    Google Scholar 

  23. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)

    Article  Google Scholar 

  24. Samal, A., Jain, S.: The regulatory network of E. coli metabolism as a boolean dynamical system exhibits both homeostasis and flexibility of response. BMC Systems Biology 2(1), 21 (2008)

    Article  Google Scholar 

  25. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)

    Article  Google Scholar 

  26. Soliman, S.: Finding minimal P/T-invariants as a CSP. In: Proceedings of the fourth Workshop on Constraint Based Methods for Bioinformatics WCB, vol. 8 (2008)

    Google Scholar 

  27. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proceedings of the National Academy of Sciences of the United States of America 107(12), 5393–5398 (2010)

    Article  Google Scholar 

  28. Wintersteiger, C., Hamadi, Y., de Moura, L.: Efficiently solving quantified bit-vector formulas. In: FMCAD, pp. 239–246 (2010)

    Google Scholar 

  29. Yaman, F., Bhatia, S., Adler, A., Densmore, D., Beal, J.: Automated Selection of Synthetic Biology Parts for Genetic Regulatory Networks. ACS Synthetic Biology 1(8), 332–344 (2012)

    Article  Google Scholar 

  30. Yordanov, B., Belta, C.: A formal verification approach to the design of synthetic gene networks. In: IEEE Conference on Decision and Control and European Control Conference, pp. 4873–4878. IEEE (2011)

    Google Scholar 

  31. Zhang, F., Rodriguez, S., Keasling, J.D.: Metabolic engineering of microbial pathways for advanced biofuels production. Current Opinion in Biotechnology 22(6), 775–783 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yordanov, B., Wintersteiger, C.M., Hamadi, Y., Kugler, H. (2013). SMT-Based Analysis of Biological Computation. In: Brat, G., Rungta, N., Venet, A. (eds) NASA Formal Methods. NFM 2013. Lecture Notes in Computer Science, vol 7871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38088-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38088-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38087-7

  • Online ISBN: 978-3-642-38088-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics