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Abstract

Cumulative resource constraints can model scarce resources in scheduling prob-
lems or a dimension in packing and cutting problems. In order to efficiently solve
such problems with a constraint programming solver, it is important to have strong
and fast propagators for cumulative resource constraints. One such propagator is the
recently developed time-table-edge-finding propagator, which considers the current
resource profile during the edge-finding propagation. Recently, lazy clause gener-
ation solvers, i.e., constraint programming solvers incorporating nogood learning,
have proved to be excellent at solving scheduling and cutting problems. For such
solvers, concise and accurate explanations of the reasons for propagation are essential
for strong nogood learning. In this paper, we develop the first explaining version
of time-table-edge-finding propagation and show preliminary results on resource-
constrained project scheduling problems from various standard benchmark suites.
On the standard benchmark suite PSPLib, we were able to close one open instance
and to improve the lower bound of about 60% of the remaining open instances.
Moreover, 6 of those instances were closed.

1. Introduction

A cumulative resource constraint models the relationship between a scarce resource and
activities requiring some part of the resource capacity for their execution. Resources can
be workers, processors, water, electricity, or, even, a dimension in a packing and cutting
problem. Due to its relevance in many industrial scheduling and placement problems, it
is important to have strong and fast propagation techniques in constraint programming
(Cp) solvers that detect inconsistencies early and remove many invalid values from the
domains of the variables involved. Moreover, when using CP solvers that incorporate
“fine-grained” nogood learning it is also important that each inconsistency and each
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value removal from a domain is explained in such a way that the full strength of nogood
learning is exploited.

In this paper, we consider renewable resources, i.e., resources with a constant re-
source capacity over time, and non-preemptive activities, i.e., whose execution cannot
be interrupted, with fixed processing times and resource usages. In this work, we de-
velop explanations for the time-table-edge-finding (TTEF) propagator [34] for use in lazy
clause generation (LcG) solvers [22] [9].

Example 1.1. Consider a simple cumulative resource scheduling problem. There are 5
activities A, B, C, D, and E to be executed before time period 10. The activities have
processing times 3, 3, 2, 4, and 1, respectively, with each activity requiring 2, 2, 3, 2,
and 1 units of resource, respectively. There is a resource capacity of 4. Assume further
that there are precedence constraints: activity B must finish before activity D begins,
written B < D, and similarly C <« E. Figure|[l| shows the five activities and precedence
relations, while Fig. |2| shows a possible schedule, where the start times are: 0, 0, 3, 5,
and 5 respectively.

In Cp solvers, a cumulative resource constraint can be modelled by a decomposition
or, more successfully, by the global constraint cumulative [2]. Since the introduction
of this global constraint, a great deal of research has investigated stronger and faster
propagation techniques. These include time-table [2], (extended) edge-finding [21, B3],
not-first /not-last [21} 25], and energetic-reasoning propagation [4, [6]. Time-table propa-
gation is usually superior for highly disjunctive problems, i.e., in which only some activi-
ties can run concurrently, while (extended) edge-finding, not-first /not-last, and energetic
reasoning are more appropriate for highly cumulative problems, i.e., in which many ac-
tivities can run concurrently.[4] The reader is referred to [6] for a detailed comparison of
these techniques.

Vilim [34] recently developed TTEF propagation which combines the time-table and
(extended) edge-finding propagation in order to perform stronger propagation while hav-
ing a low runtime overhead. Vilim [34] shows that on a range of highly disjunctive open
resource-constrained project scheduling problems from the well-established benchmark



library PSPLibE] TTEF propagation can generate lower bounds on the project dead-
line (makespan) that are superior to those found by previous methods. He uses a Cp
solver without nogood learning. This result, and the success of LCG on such prob-
lems, motivated us to study whether an explaining version of this propagation yields an
improvement in performance for L.CG solvers.

In general, nogood learning is a resolution step that infers redundant constraints,
called nogoods, given an inconsistent solution state. These nogoods are permanently or
temporarily added to the initial constraint system in order to reduce the search space
and/or to guide the search. Moreover, they can be used to short circuit propagation.
How this resolution step is performed is dependent on the underlying system.

Lca solvers employ a “fine-grained” nogood learning system that mimics the learning
of modern Boolean satisfiability (SAT) solvers (see e.g. [20]). In order to create a strong
nogood, it is necessary that each inconsistency and value removal is explained concisely
and in the most general way possible. For L.cG solvers, we have previously developed
explanations for time-table and (extended) edge-finding propagation [27]. Moreover, for
time-table propagation we have also considered the case when processing times, resource
usages, and resource capacity are variable [24]. Explanations for the time-table propaga-
tor were successfully applied on resource-constraint project scheduling problems [27, 29]
and carpet cutting [28] where in both cases the state-of-the-art of exact solution methods
were substantially improved. The explanations defined here are similar to the step-wise
ones for the (extended) edge-finding propagation in [27], but there we do not consider
the resource profile and are more complex. Moreover, the proposed explanations for
edge-finding propagation in [27] has never been implemented.

Explanations for the propagation of the cumulative constraint have also been pro-
posed for the PaLM [14), 13] and SCIP [1I [7, 12] frameworks. In the PaLM framework,
explanations are only considered for time-table propagation, while the SCIP framework
additionally provides explanations for energetic reasoning propagation and a restricted
version of edge-finding propagation. Neither framework consider bounds widening in or-
der to generalise these explanations as we do in this paper. Other related works include
[32], which presents explanations for different propagation techniques for problems only
involving disjunctive resources, i.e., cumulative resources with unary resource capacity,
and generalised nogoods [I5]. A detailed comparison of explanations for the propagation
of cumulative resource constraints in LCG solvers can be found in [24].

In this paper we develop explanations for the TTEF cumulative propagator in LcG
solvers. The explaining TTEF propagation is then compared with the explaining time-
table propagation from [27] in the LcG solver on RCPSP using the reengineered Lca
solver [9] which was also used for the experiments presented in [27].

2. Cumulative Resource Scheduling

In cumulative resource scheduling, a set of (non-preemptive) activities V and one cu-
mulative resource with a (constant) resource capacity R is given where an activity i is

'See http://129.187.106.231/psplib/,
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specified by its start time S;, its processing time p;, its resource usage r;, and its en-
ergy e; := p; - r;. In this paper we assume each S; is an integer variable and all others
are assumed to be integer constants. Further, we define est; (ect;) and lst; (lct;) as the
earliest and latest start (completion) time of i.

In this setting. the cumulative resource scheduling problem is defined as a constraint
satisfaction problem that is characterised by the set of activities V and a cumulative
resource with resource capacity R. The goal is to find a solution that assigns values
from the domain to the start time variables S; (i € V), so that the following conditions
are satisfied.

est; < 5; < lst;, Viey

>  n<R vr

1eViTE[S;,S;+pi)

where 7 ranges over the time periods considered. Note that this problem is NP-hard [5].

We shall tackle problems including cumulative resource scheduling using Cp with
nogood learning. In a CP solver, each variable S;,7 € V has an initial domain of possible
values DO(S,-) which is initially [est;,[st;]. The solver maintains a current domain D
for all variables. CP search interleaves propagation with search. The constraints are
represented by propagators that, given the current domain D, creates a new smaller
domain D’ by eliminating infeasible values. The current lower and upper bound of the
domain D(S;) are denoted by [b(S;) and ub(S;), respectively. For more details on Cp
see e.g. [23].

For a learning solver we also represent the domain of each variable S; using Boolean
variables [S; < v],est; < v < Ist;. These are used to track the reasons for propagation
and generate nogoods. For more details see [22]. We use the notation [v < S;],est; <
v < Ist; as shorthand for =[S; < v—1], and treat [v < S;],v < est; and [S; < v],v > Ist;
as synonyms for true. Propagators in a learning solver must explain each reduction in
the domain by building a clausal explanation using these Boolean variables.

Optimisation problems are typically solved in Cp via branch and bound. Given an
objective obj which is to be minimised, when a solution is found with objective value o,
a new constraint obj < o is posted to enforce that we only look for better solutions in
the subsequent search.

3. TTEF Propagation

In this section we develop explanations for TTEF propagation. For a more detailed
description about TTEF propagation the reader is referred to [34].

TTEF propagation splits the treatment of activities into a fixed and free part. The
former results from the activities’ compulsory part whereas the latter is the remainder.
The fixed part of an activity ¢ is characterised by the length of its compulsory part piTT =
max (0, ect; — Ist;) and its fixed energy el? := r; - pIT. The free part has a processing

time pfF = p; — pZTT and a free energy of efF = e; — efF. Let VP be the set of
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Figure 3: A diagram illustrating an activity ¢ when started at est; or Ist;, and its possible
range of start times, as well as the compulsory part CP;, and the fixed and free
parts of the processing time.

activities with a non-empty free part {i € V | pF'

in Figure [3]

TTEF propagation reasons about the energy available from the resource and energy
required for the execution of activities in specific time windows. The start and end times
of these windows are determined by the earliest start and the latest completion times of
activities i € V. These time windows [begin, end) are characterised by the so-called
task intervals VEI (a,b) := {i € VFI' | est, < est; Alct; < lcty} where a,b € VEI
begin := est,, and end := Icty.

It is not only the free energy of activities in the task interval V¥ (a,b) that is
considered, but also the energy resulting from the compulsory parts in the time win-
dow [esty,lcty). This energy is defined by ttEn(a,b) := ttAfter([est,] — ttAfter[lcty]
where ttAfteT‘[T] = ZtZT EiEV:lsti§t<ecti T

Furthermore, we also consider activities i € V' \ V¥ (a,b) in which a portion of their
free part must be run within the time window as described in [34]. Let Ist®f" be the
latest start time of the free part of an activity, i.e., lct; — pPF'. Then activity 4’s free
part consumes at least r; - (Icty — [stP) energy units in [est,, lcty) if est, < est; and
lstf;F < lcty. We define the energy contributed by such activities by rsEn(a,b) :=
ZiEV\VEF (a,b):estq<est; ma’x(o’ ZCtb - ZStiEF)'

In summary, TTEF propagation considers three ways in which an activity ¢ can
contribute to energy consumption within a time window determined by a task inter-
val VEF (a,b). First, the free parts that must fully be executed in the time window;
second, the compulsory parts that must lies in the time window; and third, some free
parts that must partially be run in the time window. Thus, the considered length of an
activity ¢ is

> 0}. An illustration of this is shown

pi iV (a,b)
pi(a,b) := max(0, lcty — Ist;) i ¢ VE (a,b) A est, < est;

max (0, min(lcty, ect;) — max(esty, lst;)) others

The considered energy consumption is e;(a,b) := r; - p;(a,b) in the time window.



3.1. Explanation for the TTEF Consistency Check

The consistency check is one part of TTEF propagation that checks whether there is a
resource overload in any task interval.

Proposition 3.1 (Consistency Check). The cumulative resource scheduling problem is
inconsistent if
R - (lcty — esty) — energy(a,b) <0 — L (1)

where energy(a, b) :=3;cprr (4 p) el + ttEn(a,b) + rsEn(a,b).

This check can be done in O(I2 + n) runtime, where I = [V if the resource profile
is given. The corresponding algorithm is shown in Alg. [I]in App. [A]

A naive explanation for a resource overload in the time window [est,, [cty) only con-
siders the current bounds on activities’ start times .S;.

/\ [[esti < Sl]] A [[Sz < lSti]] — 1
1€V:p;i(a,b)>0

However, we can easily generalise this explanation by only ensuring that at least p;(a, b)
time units are executed in the time window. This results in the following explanation.

/\  lesta+pi(a,b) — pi < S| A[Si < lety — pi(a,b)] — L
1€V:p;i(a,b)>0

Note that this explanation expresses a resource overload with respect to energetic rea-
soning propagation which is more general than TTEF.

Let A := energy(a,b)—R-(lcty—est,)—1. If A > 0 then the resource overload has extra
energy. We can use this extra energy to further generalise the explanation, by reducing
the energy required to appear in the time window by up to A. For example, if r; < A
then the lower and upper bound on S; can simultaneously be decreased and increased by
a total amount in {1,2, ..., min(|A/r;],pi(a, b))} units without resolving the overload. If
r; - pi(a,b) < A then we can remove activity ¢ completely from the explanation. In a
greedy manner, we try to maximally widen the bounds of activities ¢ where p;(a,b) > 0,
first considering activities with non-empty free parts. If A; denotes the time units of the
widening then it holds p;(a,b) > A; > 0 and ) (a,b)>0 A;-r; < A and we create the
following explanation.

i€EV:p;

/\ [[esta +pi(a, b) — i — A; < Sl]] A [[Sl <lecty — pi(a, b) + Al]] — L
1€V:p;(a,b)—A;>0

The last generalisation mechanism can be performed in different ways, e.g. we could
widen the bounds of activities that were involved in many recent conflicts. Further study
is required to identify which are the most appropriate.



3.2. Explanation for the TTEF Start Times Propagation

Propagation on the lower and upper bounds of the start time variables .S; are symmet-
ric; Consequently we only present the case for the lower bounds’ propagation. To prune
the lower bound of an activity u, TTEF bounds propagation tentatively starts the ac-
tivity u at its earliest start time est, and then checks whether that causes a resource
overload in any time window [est,, Icty) ({a,b} € VEF). Thus, bounds propagation and
its explanation are very similar to that of the consistency check.

The work of [34] considers four positions of u relative to the time window: right (est, <
est, < lcty < ecty), inside (est, < est, < ect, < lcty), through (est, < est, N lcty <
ecty), and left (est, < est, < ect, < lcty). The first two of these positions correspond
to edge-finding propagation and the last two to extended edge-finding propagation. We
first consider only the right and inside positions, i.e., est, < est,. Note that a could be

u. Then,

rest(a,b,u)

R - (lcty — esty) — energy(a,b,u) < 0 — [ —‘ < Sy (2)

where energy(a, b, u) := energy(a,b) — ey(a,b) + ry - (min(lcty, ect,,) — est,,) and

Tu

rest(a,b,u) := energy(a,b,u) — (R —ry) - (lcty, — esty)

— 71y - (min(lcty, ecty,) — esty,) .

The first two terms in the sum of energy(a,b,u) gives the energy consumption of all
considered activities except u, whereas the last term is the required energy of v if it is
scheduled at est,, in the time window [est,, lctp). The propagation, including explanation
generation, can be performed in O(I%2 4k -n) runtime, where [ = |V*'| and k the number
of bounds’ updates, if the resource profile is given. Moreover, TTEF propation does not
necessarily consider each u € VF but those only that maximise min(eZF, 7, - (Ict, —
estq)) — o - max(0, lcty — IstEF) and satisfy est, < est,. The corresponding algorithm is
shown in Alg. 2]in App. [A]

A naive explanation for a lower bound update from est,, to newLB := [rest(a, b, u)/ry]
with respect to the time window [est,, [cty) additionally includes the previous and new
lower bound on the left and right hand side of the implication, respectively, in comparison
to the naive explanation for a resource overload.

[esty < Su] A /\ [est; < Si] A [Si < lsti] — [newLlB < S,]
1€V\{u}:pi(a,b)>0

As we discussed in the case of resource overload, we perform a similar generalisation
for the activities in V \ {u}, and for u we decrease the lower bound on the left hand
side as much as possible so that the same propagation holds when u is executed at that



Table 1: Specifications of the benchmark suites.

suite sub-suites #inst #act Di #res notes

AT [3] ST27/sT51/sT103| 48 each 25/49/101 1-12 6 each

PSPLib [16] 130 [17]/360/390 {480 each 30/60/90 1-10 4 each

J120 600 30 1-10 4

BL [4] BL20/BL25 20 each ~ 20/25 1-6 3 each

Pack [§] 55 15-33 1-19 25

KSD15.p [18] 480 15 1-250 4 based on 330

PAck_D [I§] 55 15-33  1-1138 2-5 based on
Pack

decreased lower bound.

[estq + lcty — newLB 4+ 1 — p, < Sy]A

A\ lesta + pi(a,b) —pi < Si] A[Si < lety — pi(a,b)]
i€V\{u}:pi(a,b)>0

— [newLB < S,] (3)

Again this more general explanation expresses the energetic reasoning propagation and
the bounds of activities in {7 € V \ {u} | pi(a,b) > 0} can further be generalised in the
same way as for a resource overload. But here the available energy units A for widening
the bounds is rest(a,b,u) — ry - (newLB — 1) + 1. Hence, 0 < A < r, indicate that the
explanation only can further be generalised a little bit. We perform this generalisation
as for the overload case.

4. Experiments on Resource-constrained Project Scheduling
Problems

We carried out extensive experiments on RCPSP instances comparing our solution ap-
proach using both time-table and/or TTEF propagation. We compare the obtained
results on the lower bounds of the makespan with the best known so far. Detailed
results are available at http://www.cs.mu.oz.au/~pjs/rcpsp

We used six benchmark suites for which an overview is given in Tab. [I] where #inst,
#act, p;, and F#res are the number of instances, number of activities, range of processing
times, and number of resources, respectively. The first two suites are highly disjunctive,
while the remainder are highly cumulative.

The experiments were run on a X86-64 architecture running GNU/Linux and a In-
tel(R) Core(TM) i7 CPU processor at 2.8GHz. The code was written in Mercury [30]
using the G12 Constraint Programming Platform [31].

We model an instance as in [27] using global cumulative constraints cumulative and
difference logic constraints (S;+p; < S;), resp. In addition, between two activities 4, j in
disjunction, i.e., two activities which cannot concurrently run without overloading some
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resource, the two half-reified constraints [10] b — S; +p; < Sj and b — S; +p; < S;
are posted where b is a Boolean variable.
We run cumulative constraint propagation using different phases:

time-table consistency check in O(n + plogp) runtime,
TTEF consistency check in O(I2 + n) runtime as defined in Section
time-table bounds’ propagation in O(l - p 4+ k - min(R, n)) runtime, and

TTEF bounds’ propagation in O(I2 + k- n) runtime as defined in Section where
k,l,n,p are the numbers of bounds’ updates, unfixed activities, all activities, and
height changes in the resource profile, resp.

Note that in our setup phase (d) TTEF bounds’ propagation does not take into account
the bounds’ changes of the phase (c) time-table bounds’ propagation. For the experi-
ments, we consider three settings of the cumulative propagator: tt executes phases (a)
and (c), ttef(c) (a—), and ttef (a—d). Note that phases (c) and (d) are not run if either
phase (a) or (b) detects inconsistency.

4.1. Upper Bound Computation

For solving RCPSP we use the same branch-and-bound algorithm as we used in [27],
but here we limit ourselves to the search heuristic HOTRESTART which was the most
robust one in our previous studies [26, 27]. It executes an adapted search of [4] using
serial scheduling generation for the first 500 choice points and, then, continues with an
activity based search (a variant of VSIDs [20]) on the Boolean variables representing a
lower part z < v and upper part v < x of the variable x’s domain where x is either a
start time or the makespan variable and v a value of z’s initial domain. Moreover, it is
interleaved with a geometric restart policy [35] on the number of node failures for which
the restart base and factor are 250 failures and 2.0, respectively. The search was halted
after 10 minutes.

The results are given in Tab. [2land [3] For each benchmark suite, the number of solved
instances (#svd) is given. The column cmpr(a) shows the results on the instances solved
by all methods, where a is the number of such instances. The left entry in that column
is the average runtime on these instances in seconds, and the right entry is the average
number of failures during search. The entries in column all(a) have the same meaning,
but here all instances are considered where a is the total number of instances. For
unsolved instances, the number of failures after 10 minutes is used.

Table [2| shows the results on the highly disjunctive RCPsSPs. As expected, the stronger
propagation (ttef(c), ttef) reduces the search space overall in comparision to tt, but the
average runtime is higher by a factor of about 5%—70% and 50%—100% for ttef(c) and
ttef. Interestingly, ttef(c) and ttef solved respectively 1 and 2 more instances on J60 and
closed the instance j120_1_1 on J120 which has an optimal makespan 105. This makespan
corresponds to the best known upper bound. However, the stronger propagation does
not generally pay off for a CP solver with nogood learning.



Table 2: UB results on highly disjunctive RCPSPs.
160

J30

#svd| cmpr(480)

all(480)

#svd

cmpr(429)

all(480)

tt
ttef(c)
ttef

480
480
480

0.12 1074
0.20 1103
0.23 991

0.12
0.20
0.23

1074
1103
991

430
431
432

1.82 579
2.00 486
3.04 519

8| 64.25 93164
0| 64.39 80845
1] 64.87 62534

J90

#svd | cmpr(400)

all(480)

#svd

cmpr(280)

J120

all(600)

tt
ttef(c)
ttef

400
400
400

5.03 9229
6.93 9512
8.10 8830

104.09 132234
105.69 104297
106.66 72402

283
282
283

9.71 1502
13.47 1695
14.97 1349

21322.35 398941
81324.73 297562
0324.66 186597

AT

#svd| cmpr(129)

all(144)

tt
ttef(c)
ttef

132
130
129

8.90 19997
9.36 16466
13.55 17239

66.22 87226
72056
74.60 63554

69.41

Table 3: UB results on highly cumulative RcpPsPs.

BL

#svd | cmpr(40)

all(40)

#svd

Pack
cmpr(16)

all(55)

tt

ttef(c)

ttef

40
40
40

0.16 2568
0.02 370
0.02 269

0.16 2568
0.02 370
0.02 269

16
39
39

77.65 245441
37.22 122038
44.44 105751

447.69 699615
186.79 292101
188.23 257747

#svd | cmpr(480)

KSD15.D

all(480)

#svd

PACKk_D

cmpr(37)

all(55)

tt

ttef(c)

ttef

480
480
480

0.01 26
0.01 26
0.01 26

0.01 26
0.01 26
0.01 26

37
37
37

10

32.72 42503
23.96 32916
36.93 37004

218.26 184293
212.37 170301
221.11 157015



Table 4: LB results on AT, PACK, and PACK_D
| AT | Pack | Pack.p

5/4/3 +52|0/4/12 +100|0/7/11 +632

7/2/3 +44|1/4/11 +101|2/5/10 +618

ttef(c)
ttef

Table 5: LB results on J60, 90, and 120

J60 J90 J120
+1 42 +3|+1 +2 43 +4 +5| +1 +2 +3 +4 +5 +6 +7 +8 +9 +10
. ttef(c) 4 1 -112 1 - - -l 2r 8 4 - - - 2 - - -
1 min
ttef 7T 5 -|25 14 3 1 -1 90 20 10 5 2 - - 2 - -
10 mins tteﬂc) 21 2 -2 7 - - -]/ 68 16 4 4 2 - - 1 1 -
ttef 3 6 33 17 6 3 1)116 39 9 9 4 1 - - 1 1

Table [3| presents the results on highly cumulative Rcpsps which clearly shows the
benefit of TTEF propagation, especially on BL for which ttef(c) and ttef reduce the
search space and the average runtime by a factor of 8, and PACK for which they solved
23 instances more than tt. On PACK_D, ttef(c) is about 50% faster on average than tt
while ttef is slightly slower on average than tt. No conclusion can be drawn on KSD15_D
because the instances are easy for LCG solvers.

4.2. Lower Bound Computation

The lower bound computation tries to solve RCPSPs in a destructive way by converging
to the optimal makespan from below, i.e., it repeatedly proves that there exists no
solution for current makespan considered and continues with an incremented makespan
by 1. If a solution found then it is the optimal one. For these experiments we use the
search heuristic HOTSTART as we did in [26], 27]. This heuristic is HOTRESTART (as
decribed earlier) but no restart. We used the same parameters as for HOTRESTART.
For the starting makespan, we choose the best known lower bounds on 160, J90, and
J120 recorded in the PSPLib at http://129.187.106.231/psplib/|and [34] at http://
vilim.eu/petr/cpaior2011-results.txt. On the other suites, the search starts from
makespan 1. Due to the tighter makespan, it is expected that the TTEF propagation will
perform better than for upper bound computation on the highly disjunctive instances.
The search was cut off at 10 minutes as in [26, 27].

Table [4] shows the results on AT, PACK, and PACK_D restricted to the instances that
none of the methods could solve using the upper bound computation, that are 12, 16,
and 18 for AT, PACK, and PACK_D, respectively. An entry a/b/c for method = means
that x achieved respectively a-times, b-times and c-times a worse, the same and a better
lower bound than tt. The entry +d is the sum of lower bounds’ differences of method
x to tt. On PACK and PACK_D, ttef(c) and ttef clearly perform better than tt. On the
highly disjunctive instances in AT, ttef(c) and tt are almost balanced whereas tt could
generate better lower bounds on more instances as ttef. The lower bounds’ differences
on AT are dominated by the instance st103_4 for which ttef(c) and ttef retrieved a lower
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bound improvement of 54 and 53 time periods with respect to tt.

The more interesting results are presented in Tab. [5| because the best lower bounds
are known for all the remaining open instances (48, 77, 307 in J60, J90, JlQO)E] An
entry in a column +d shows the number of instances for that the corresponding method
could improve the lower bound by d time periods. On these instances, we run at first
the experiments with a runtime limit of one minute as it was done in the experiments
for TTEF propagation in [34] but he used a CP solver without nogood learning. tt could
not improve any lower bound because its corresponding results are already recorded
in the PSPLib. ttef(c) and ttef improved the lower bounds of 59 and 183 instances,
respectively, which is about 13.7% and 42.4% of the open instances. Although, the
experiments in [34] were run on a slower machineﬂ the results confirm the importance
of nogood learning. For the experiments with 10 minutes runtime, we excluded tt due
to time constraints and expected inferior results to ttef(c) and ttef. With the extended
runtime, ttef(c) and ttef could improved the lower bounds of more instance, namely 151
and 264 instances, respectively, which is about 35.0% and 61.1%. Moreover, 3, 1, and
1 of the remaining open instances on J60, J90, and J120, respectively, could be solved
optimally. See App. [B] for the listing of the closed instances and the new lower bounds.

5. Conclusion and Outlook

We present explanations for the recently developed TTEF propagation of the global
cumulative constraint for lazy clause generation solvers. These explanations express an
energetic reasoning propagation which is a stronger propagation than the TTEF one.

Our implementation of this propagator was compared to time-table propagation in
lazy clause generation solvers on six benchmark suites. The preliminary results confirms
the importance of energy-based reasoning on highly disjunctive Rcpsps for Cp solvers
with nogood learning.

Moreover, our approach with TTEF propagation was able to close one instance. It
also improves the best known lower bounds for 264 of the remaining 432 remaining open
instances on Rcpsps from the PSPLib.

In the future, we want to integrate the extended edge-finding propagation into TTEF
propagation as it was originally proposed in [34], to perform experiments on cutting and
packing problems, and to study different variations of explanations for TTEF propaga-
tion. Furthermore, we want to look at a more efficient implementation of the TTEF
propagation as well as an implementation of energetic reasoning.
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A. TTEF propagation algorithms

Algorithmshows the TTEF consistency check used. The outer loop (lines 2-16) iterates
over all distinctive possible end times for the time windows while the inner loop (lines
7-16) iterates over all possible start times. In line 11 (12), it checks whether @ must
fully (partially) be executed in the current time window and further ones checked in the
same inner loop. If so it adds the required free energy units e of a to E. In line 13,
it calculates the still available energy units in the time window [begin, end) taking the
energy units from the resource profile ttEn(a, b) into account. If this results in a resource
overload then a corresponding explanation is generated (line 15) and the algorithm fails;

otherwise, the algorithm succeeds.

Algorithm 1: TTEF consistency check.

Input : X an array of activities sorted in non-decreasing order of the earliest start time.
Input : Y an array of 