
Explaining Time-Table-Edge-Finding
Propagation for the Cumulative Resource

Constraint

Andreas Schutt Thibaut Feydy Peter J. Stuckey

Optimisation Research Group, National ICT Australia, and Department of Computing and
Information Systems, The University of Melbourne, Victoria 3010, Australia

{andreas.schutt,thibaut.feydy,peter.stuckey}@nicta.com.au

Abstract

Cumulative resource constraints can model scarce resources in scheduling prob-
lems or a dimension in packing and cutting problems. In order to efficiently solve
such problems with a constraint programming solver, it is important to have strong
and fast propagators for cumulative resource constraints. One such propagator is the
recently developed time-table-edge-finding propagator, which considers the current
resource profile during the edge-finding propagation. Recently, lazy clause gener-
ation solvers, i.e., constraint programming solvers incorporating nogood learning,
have proved to be excellent at solving scheduling and cutting problems. For such
solvers, concise and accurate explanations of the reasons for propagation are essential
for strong nogood learning. In this paper, we develop the first explaining version
of time-table-edge-finding propagation and show preliminary results on resource-
constrained project scheduling problems from various standard benchmark suites.
On the standard benchmark suite PSPLib, we were able to close one open instance
and to improve the lower bound of about 60% of the remaining open instances.
Moreover, 6 of those instances were closed.

1. Introduction

A cumulative resource constraint models the relationship between a scarce resource and
activities requiring some part of the resource capacity for their execution. Resources can
be workers, processors, water, electricity, or, even, a dimension in a packing and cutting
problem. Due to its relevance in many industrial scheduling and placement problems, it
is important to have strong and fast propagation techniques in constraint programming
(Cp) solvers that detect inconsistencies early and remove many invalid values from the
domains of the variables involved. Moreover, when using Cp solvers that incorporate
“fine-grained” nogood learning it is also important that each inconsistency and each
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Figure 2: A possible schedule of the
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value removal from a domain is explained in such a way that the full strength of nogood
learning is exploited.

In this paper, we consider renewable resources, i.e., resources with a constant re-
source capacity over time, and non-preemptive activities, i.e., whose execution cannot
be interrupted, with fixed processing times and resource usages. In this work, we de-
velop explanations for the time-table-edge-finding (TtEf) propagator [34] for use in lazy
clause generation (Lcg) solvers [22, 9].

Example 1.1. Consider a simple cumulative resource scheduling problem. There are 5
activities A, B, C, D, and E to be executed before time period 10. The activities have
processing times 3, 3, 2, 4, and 1, respectively, with each activity requiring 2, 2, 3, 2,
and 1 units of resource, respectively. There is a resource capacity of 4. Assume further
that there are precedence constraints: activity B must finish before activity D begins,
written B � D, and similarly C � E. Figure 1 shows the five activities and precedence
relations, while Fig. 2 shows a possible schedule, where the start times are: 0, 0, 3, 5,
and 5 respectively.

In Cp solvers, a cumulative resource constraint can be modelled by a decomposition
or, more successfully, by the global constraint cumulative [2]. Since the introduction
of this global constraint, a great deal of research has investigated stronger and faster
propagation techniques. These include time-table [2], (extended) edge-finding [21, 33],
not-first/not-last [21, 25], and energetic-reasoning propagation [4, 6]. Time-table propa-
gation is usually superior for highly disjunctive problems, i.e., in which only some activi-
ties can run concurrently, while (extended) edge-finding, not-first/not-last, and energetic
reasoning are more appropriate for highly cumulative problems, i.e., in which many ac-
tivities can run concurrently.[4] The reader is referred to [6] for a detailed comparison of
these techniques.

Vilim [34] recently developed TtEf propagation which combines the time-table and
(extended) edge-finding propagation in order to perform stronger propagation while hav-
ing a low runtime overhead. Vilim [34] shows that on a range of highly disjunctive open
resource-constrained project scheduling problems from the well-established benchmark

2



library PSPLib,1 TtEf propagation can generate lower bounds on the project dead-
line (makespan) that are superior to those found by previous methods. He uses a Cp
solver without nogood learning. This result, and the success of Lcg on such prob-
lems, motivated us to study whether an explaining version of this propagation yields an
improvement in performance for Lcg solvers.

In general, nogood learning is a resolution step that infers redundant constraints,
called nogoods, given an inconsistent solution state. These nogoods are permanently or
temporarily added to the initial constraint system in order to reduce the search space
and/or to guide the search. Moreover, they can be used to short circuit propagation.
How this resolution step is performed is dependent on the underlying system.
Lcg solvers employ a “fine-grained” nogood learning system that mimics the learning

of modern Boolean satisfiability (Sat) solvers (see e.g. [20]). In order to create a strong
nogood, it is necessary that each inconsistency and value removal is explained concisely
and in the most general way possible. For Lcg solvers, we have previously developed
explanations for time-table and (extended) edge-finding propagation [27]. Moreover, for
time-table propagation we have also considered the case when processing times, resource
usages, and resource capacity are variable [24]. Explanations for the time-table propaga-
tor were successfully applied on resource-constraint project scheduling problems [27, 29]
and carpet cutting [28] where in both cases the state-of-the-art of exact solution methods
were substantially improved. The explanations defined here are similar to the step-wise
ones for the (extended) edge-finding propagation in [27], but there we do not consider
the resource profile and are more complex. Moreover, the proposed explanations for
edge-finding propagation in [27] has never been implemented.

Explanations for the propagation of the cumulative constraint have also been pro-
posed for the PaLM [14, 13] and SCIP [1, 7, 12] frameworks. In the PaLM framework,
explanations are only considered for time-table propagation, while the SCIP framework
additionally provides explanations for energetic reasoning propagation and a restricted
version of edge-finding propagation. Neither framework consider bounds widening in or-
der to generalise these explanations as we do in this paper. Other related works include
[32], which presents explanations for different propagation techniques for problems only
involving disjunctive resources, i.e., cumulative resources with unary resource capacity,
and generalised nogoods [15]. A detailed comparison of explanations for the propagation
of cumulative resource constraints in Lcg solvers can be found in [24].

In this paper we develop explanations for the TtEf cumulative propagator in Lcg
solvers. The explaining TtEf propagation is then compared with the explaining time-
table propagation from [27] in the Lcg solver on Rcpsp using the reengineered Lcg
solver [9] which was also used for the experiments presented in [27].

2. Cumulative Resource Scheduling

In cumulative resource scheduling, a set of (non-preemptive) activities V and one cu-
mulative resource with a (constant) resource capacity R is given where an activity i is

1See http://129.187.106.231/psplib/.
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specified by its start time Si, its processing time pi, its resource usage ri, and its en-
ergy ei := pi · ri. In this paper we assume each Si is an integer variable and all others
are assumed to be integer constants. Further, we define esti (ecti) and lsti (lcti) as the
earliest and latest start (completion) time of i.

In this setting. the cumulative resource scheduling problem is defined as a constraint
satisfaction problem that is characterised by the set of activities V and a cumulative
resource with resource capacity R. The goal is to find a solution that assigns values
from the domain to the start time variables Si (i ∈ V), so that the following conditions
are satisfied.

esti ≤ Si ≤ lsti, ∀i ∈ V∑
i∈V:τ∈[Si,Si+pi)

ri ≤ R ∀τ

where τ ranges over the time periods considered. Note that this problem is NP-hard [5].
We shall tackle problems including cumulative resource scheduling using Cp with

nogood learning. In a Cp solver, each variable Si, i ∈ V has an initial domain of possible
values D0(Si) which is initially [esti, lsti]. The solver maintains a current domain D
for all variables. Cp search interleaves propagation with search. The constraints are
represented by propagators that, given the current domain D, creates a new smaller
domain D′ by eliminating infeasible values. The current lower and upper bound of the
domain D(Si) are denoted by lb(Si) and ub(Si), respectively. For more details on Cp
see e.g. [23].

For a learning solver we also represent the domain of each variable Si using Boolean
variables JSi ≤ vK, esti ≤ v < lsti. These are used to track the reasons for propagation
and generate nogoods. For more details see [22]. We use the notation Jv ≤ SiK, esti <
v ≤ lsti as shorthand for ¬JSi ≤ v−1K, and treat Jv ≤ SiK, v ≤ esti and JSi ≤ vK, v ≥ lsti
as synonyms for true. Propagators in a learning solver must explain each reduction in
the domain by building a clausal explanation using these Boolean variables.

Optimisation problems are typically solved in Cp via branch and bound. Given an
objective obj which is to be minimised, when a solution is found with objective value o,
a new constraint obj < o is posted to enforce that we only look for better solutions in
the subsequent search.

3. TTEF Propagation

In this section we develop explanations for TtEf propagation. For a more detailed
description about TtEf propagation the reader is referred to [34].
TtEf propagation splits the treatment of activities into a fixed and free part. The

former results from the activities’ compulsory part whereas the latter is the remainder.
The fixed part of an activity i is characterised by the length of its compulsory part pTTi :=
max(0, ecti − lsti) and its fixed energy eTTi := ri · pTTi . The free part has a processing
time pEFi := pi − pTTi and a free energy of eEFi := ei − eEFi . Let VEF be the set of
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Figure 3: A diagram illustrating an activity i when started at esti or lsti, and its possible
range of start times, as well as the compulsory part CPi, and the fixed and free
parts of the processing time.

activities with a non-empty free part {i ∈ V | pEFi > 0}. An illustration of this is shown
in Figure 3.
TtEf propagation reasons about the energy available from the resource and energy

required for the execution of activities in specific time windows. The start and end times
of these windows are determined by the earliest start and the latest completion times of
activities i ∈ VEF . These time windows [begin, end) are characterised by the so-called
task intervals VEF (a, b) := {i ∈ VEF | esta ≤ esti ∧ lcti ≤ lctb} where a, b ∈ VEF ,
begin := esta, and end := lctb.

It is not only the free energy of activities in the task interval VEF (a, b) that is
considered, but also the energy resulting from the compulsory parts in the time win-
dow [estb, lctb). This energy is defined by ttEn(a, b) := ttAfter[esta] − ttAfter[lctb]
where ttAfter[τ ] :=

∑
t≥τ
∑

i∈V:lsti≤t<ecti ri.

Furthermore, we also consider activities i ∈ V \ VEF (a, b) in which a portion of their
free part must be run within the time window as described in [34]. Let lstEFi be the
latest start time of the free part of an activity, i.e., lcti − pEFi . Then activity i’s free
part consumes at least ri · (lctb − lstEFi ) energy units in [esta, lctb) if esta ≤ esti and
lstEFi < lctb. We define the energy contributed by such activities by rsEn(a, b) :=∑

i∈V\VEF (a,b):esta≤esti max(0, lctb − lstEFi ).
In summary, TtEf propagation considers three ways in which an activity i can

contribute to energy consumption within a time window determined by a task inter-
val VEF (a, b). First, the free parts that must fully be executed in the time window;
second, the compulsory parts that must lies in the time window; and third, some free
parts that must partially be run in the time window. Thus, the considered length of an
activity i is

pi(a, b) :=


pi i ∈ VEF (a, b)

max(0, lctb − lsti) i /∈ VEF (a, b) ∧ esta ≤ esti
max(0,min(lctb, ecti)−max(esta, lsti)) others

The considered energy consumption is ei(a, b) := ri · pi(a, b) in the time window.
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3.1. Explanation for the TTEF Consistency Check

The consistency check is one part of TtEf propagation that checks whether there is a
resource overload in any task interval.

Proposition 3.1 (Consistency Check). The cumulative resource scheduling problem is
inconsistent if

R · (lctb − esta)− energy(a, b) < 0→ ⊥ (1)

where energy(a, b) :=
∑

i∈VEF (a,b) e
EF
i + ttEn(a, b) + rsEn(a, b).

This check can be done in O(l2 + n) runtime, where l = |VEF |, if the resource profile
is given. The corresponding algorithm is shown in Alg. 1 in App. A.

A näıve explanation for a resource overload in the time window [esta, lctb) only con-
siders the current bounds on activities’ start times Si.∧

i∈V:pi(a,b)>0

Jesti ≤ SiK ∧ JSi ≤ lstiK→ ⊥

However, we can easily generalise this explanation by only ensuring that at least pi(a, b)
time units are executed in the time window. This results in the following explanation.∧

i∈V:pi(a,b)>0

Jesta + pi(a, b)− pi ≤ SiK ∧ JSi ≤ lctb − pi(a, b)K→ ⊥

Note that this explanation expresses a resource overload with respect to energetic rea-
soning propagation which is more general than TtEf.

Let ∆ := energy(a, b)−R·(lctb−esta)−1. If ∆ > 0 then the resource overload has extra
energy. We can use this extra energy to further generalise the explanation, by reducing
the energy required to appear in the time window by up to ∆. For example, if ri ≤ ∆
then the lower and upper bound on Si can simultaneously be decreased and increased by
a total amount in {1, 2, ...,min(b∆/ric, pi(a, b))} units without resolving the overload. If
ri · pi(a, b) ≤ ∆ then we can remove activity i completely from the explanation. In a
greedy manner, we try to maximally widen the bounds of activities i where pi(a, b) > 0,
first considering activities with non-empty free parts. If ∆i denotes the time units of the
widening then it holds pi(a, b) ≥ ∆i ≥ 0 and

∑
i∈V:pi(a,b)>0 ∆i · ri ≤ ∆ and we create the

following explanation.∧
i∈V:pi(a,b)−∆i>0

Jesta + pi(a, b)− pi −∆i ≤ SiK ∧ JSi ≤ lctb − pi(a, b) + ∆iK→ ⊥

The last generalisation mechanism can be performed in different ways, e.g. we could
widen the bounds of activities that were involved in many recent conflicts. Further study
is required to identify which are the most appropriate.
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3.2. Explanation for the TTEF Start Times Propagation

Propagation on the lower and upper bounds of the start time variables Si are symmet-
ric; Consequently we only present the case for the lower bounds’ propagation. To prune
the lower bound of an activity u, TtEf bounds propagation tentatively starts the ac-
tivity u at its earliest start time estu and then checks whether that causes a resource
overload in any time window [esta, lctb) ({a, b} ⊆ VEF ). Thus, bounds propagation and
its explanation are very similar to that of the consistency check.

The work of [34] considers four positions of u relative to the time window: right (esta ≤
estu < lctb < ectu), inside (esta ≤ estu < ectu ≤ lctb), through (estu < esta ∧ lctb <
ectu), and left (estu < esta < ectu ≤ lctb). The first two of these positions correspond
to edge-finding propagation and the last two to extended edge-finding propagation. We
first consider only the right and inside positions, i.e., esta ≤ estu. Note that a could be
u. Then,

R · (lctb − esta)− energy(a, b, u) < 0→
⌈
rest(a, b, u)

ru

⌉
≤ Su (2)

where energy(a, b, u) := energy(a, b)− eu(a, b) + ru · (min(lctb, ectu)− estu) and

rest(a, b, u) := energy(a, b, u)− (R− ru) · (lctb − esta)
− ru · (min(lctb, ectu)− estu) .

The first two terms in the sum of energy(a, b, u) gives the energy consumption of all
considered activities except u, whereas the last term is the required energy of u if it is
scheduled at estu in the time window [esta, lctb). The propagation, including explanation
generation, can be performed in O(l2 +k ·n) runtime, where l = |VEF | and k the number
of bounds’ updates, if the resource profile is given. Moreover, TtEf propation does not
necessarily consider each u ∈ VEF , but those only that maximise min(eEFu , ru · (lctb −
esta))− ru ·max(0, lctb− lstEFu ) and satisfy esta ≤ estu. The corresponding algorithm is
shown in Alg. 2 in App. A.

A näıve explanation for a lower bound update from estu to newLB := drest(a, b, u)/rue
with respect to the time window [esta, lctb) additionally includes the previous and new
lower bound on the left and right hand side of the implication, respectively, in comparison
to the näıve explanation for a resource overload.

Jestu ≤ SuK ∧
∧

i∈V\{u}:pi(a,b)>0

Jesti ≤ SiK ∧ JSi ≤ lstiK→ JnewLB ≤ SuK

As we discussed in the case of resource overload, we perform a similar generalisation
for the activities in V \ {u}, and for u we decrease the lower bound on the left hand
side as much as possible so that the same propagation holds when u is executed at that

7



Table 1: Specifications of the benchmark suites.
suite sub-suites #inst #act pi #res notes
AT [3] st27/st51/st103 48 each 25/49/101 1–12 6 each
PSPLib [16] j30 [17]/j60/j90 480 each 30/60/90 1–10 4 each

j120 600 30 1–10 4
BL [4] bl20/bl25 20 each 20/25 1–6 3 each
Pack [8] 55 15–33 1–19 2–5
KSD15 d [18] 480 15 1–250 4 based on j30
Pack d [18] 55 15–33 1–1138 2–5 based on

Pack

decreased lower bound.

Jesta + lctb − newLB + 1− pu ≤ SuK∧∧
i∈V\{u}:pi(a,b)>0

Jesta + pi(a, b)− pi ≤ SiK ∧ JSi ≤ lctb − pi(a, b)K

→ JnewLB ≤ SuK (3)

Again this more general explanation expresses the energetic reasoning propagation and
the bounds of activities in {i ∈ V \ {u} | pi(a, b) > 0} can further be generalised in the
same way as for a resource overload. But here the available energy units ∆ for widening
the bounds is rest(a, b, u)− ru · (newLB − 1) + 1. Hence, 0 ≤ ∆ < ru indicate that the
explanation only can further be generalised a little bit. We perform this generalisation
as for the overload case.

4. Experiments on Resource-constrained Project Scheduling
Problems

We carried out extensive experiments on Rcpsp instances comparing our solution ap-
proach using both time-table and/or TtEf propagation. We compare the obtained
results on the lower bounds of the makespan with the best known so far. Detailed
results are available at http://www.cs.mu.oz.au/~pjs/rcpsp.

We used six benchmark suites for which an overview is given in Tab. 1 where #inst,
#act, pi, and #res are the number of instances, number of activities, range of processing
times, and number of resources, respectively. The first two suites are highly disjunctive,
while the remainder are highly cumulative.

The experiments were run on a X86-64 architecture running GNU/Linux and a In-
tel(R) Core(TM) i7 CPU processor at 2.8GHz. The code was written in Mercury [30]
using the G12 Constraint Programming Platform [31].

We model an instance as in [27] using global cumulative constraints cumulative and
difference logic constraints (Si+pi ≤ Sj), resp. In addition, between two activities i, j in
disjunction, i.e., two activities which cannot concurrently run without overloading some

8
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resource, the two half-reified constraints [10] b → Si + pi ≤ Sj and ¬b → Sj + pj ≤ Si
are posted where b is a Boolean variable.

We run cumulative constraint propagation using different phases:

(a) time-table consistency check in O(n+ p log p) runtime,

(b) TtEf consistency check in O(l2 + n) runtime as defined in Section 3.1,

(c) time-table bounds’ propagation in O(l · p+ k ·min(R,n)) runtime, and

(d) TtEf bounds’ propagation in O(l2 +k ·n) runtime as defined in Section 3.2 where
k, l, n, p are the numbers of bounds’ updates, unfixed activities, all activities, and
height changes in the resource profile, resp.

Note that in our setup phase (d) TtEf bounds’ propagation does not take into account
the bounds’ changes of the phase (c) time-table bounds’ propagation. For the experi-
ments, we consider three settings of the cumulative propagator: tt executes phases (a)
and (c), ttef(c) (a–c), and ttef (a–d). Note that phases (c) and (d) are not run if either
phase (a) or (b) detects inconsistency.

4.1. Upper Bound Computation

For solving Rcpsp we use the same branch-and-bound algorithm as we used in [27],
but here we limit ourselves to the search heuristic HotRestart which was the most
robust one in our previous studies [26, 27]. It executes an adapted search of [4] using
serial scheduling generation for the first 500 choice points and, then, continues with an
activity based search (a variant of Vsids [20]) on the Boolean variables representing a
lower part x ≤ v and upper part v < x of the variable x’s domain where x is either a
start time or the makespan variable and v a value of x’s initial domain. Moreover, it is
interleaved with a geometric restart policy [35] on the number of node failures for which
the restart base and factor are 250 failures and 2.0, respectively. The search was halted
after 10 minutes.

The results are given in Tab. 2 and 3. For each benchmark suite, the number of solved
instances (#svd) is given. The column cmpr(a) shows the results on the instances solved
by all methods, where a is the number of such instances. The left entry in that column
is the average runtime on these instances in seconds, and the right entry is the average
number of failures during search. The entries in column all(a) have the same meaning,
but here all instances are considered where a is the total number of instances. For
unsolved instances, the number of failures after 10 minutes is used.

Table 2 shows the results on the highly disjunctive Rcpsps. As expected, the stronger
propagation (ttef(c), ttef) reduces the search space overall in comparision to tt, but the
average runtime is higher by a factor of about 5%–70% and 50%–100% for ttef(c) and
ttef. Interestingly, ttef(c) and ttef solved respectively 1 and 2 more instances on j60 and
closed the instance j120 1 1 on j120 which has an optimal makespan 105. This makespan
corresponds to the best known upper bound. However, the stronger propagation does
not generally pay off for a Cp solver with nogood learning.
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Table 2: UB results on highly disjunctive Rcpsps.
j30 j60

#svd cmpr(480) all(480) #svd cmpr(429) all(480)
tt 480 0.12 1074 0.12 1074 430 1.82 5798 64.25 93164
ttef(c) 480 0.20 1103 0.20 1103 431 2.00 4860 64.39 80845
ttef 480 0.23 991 0.23 991 432 3.04 5191 64.87 62534

j90 j120
#svd cmpr(400) all(480) #svd cmpr(280) all(600)

tt 400 5.03 9229 104.09 132234 283 9.71 15022 322.35 398941
ttef(c) 400 6.93 9512 105.69 104297 282 13.47 16958 324.73 297562
ttef 400 8.10 8830 106.66 72402 283 14.97 13490 324.66 186597

AT
#svd cmpr(129) all(144)

tt 132 8.90 19997 66.22 87226
ttef(c) 130 9.36 16466 69.41 72056
ttef 129 13.55 17239 74.60 63554

Table 3: UB results on highly cumulative Rcpsps.
BL Pack

#svd cmpr(40) all(40) #svd cmpr(16) all(55)
tt 40 0.16 2568 0.16 2568 16 77.65 245441 447.69 699615
ttef(c) 40 0.02 370 0.02 370 39 37.22 122038 186.79 292101
ttef 40 0.02 269 0.02 269 39 44.44 105751 188.23 257747

KSD15 d Pack d
#svd cmpr(480) all(480) #svd cmpr(37) all(55)

tt 480 0.01 26 0.01 26 37 32.72 42503 218.26 184293
ttef(c) 480 0.01 26 0.01 26 37 23.96 32916 212.37 170301
ttef 480 0.01 26 0.01 26 37 36.93 37004 221.11 157015

10



Table 4: LB results on AT, Pack, and Pack d
AT Pack Pack d

ttef(c) 5/4/3 +52 0/4/12 +100 0/7/11 +632
ttef 7/2/3 +44 1/4/11 +101 2/5/10 +618

Table 5: LB results on j60, j90, and j120
j60 j90 j120

+1 +2 +3 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10

1 min
ttef(c) 4 1 - 12 1 - - - 27 8 4 - - - 2 - - -
ttef 7 5 - 25 14 3 1 - 90 20 10 5 2 - - 2 - -

10 mins
ttef(c) 21 2 - 25 7 - - - 68 16 4 4 2 - - 1 1 -
ttef 13 6 3 35 17 6 3 1 116 39 9 9 4 1 - - 1 1

Table 3 presents the results on highly cumulative Rcpsps which clearly shows the
benefit of TtEf propagation, especially on BL for which ttef(c) and ttef reduce the
search space and the average runtime by a factor of 8, and Pack for which they solved
23 instances more than tt. On Pack d, ttef(c) is about 50% faster on average than tt
while ttef is slightly slower on average than tt. No conclusion can be drawn on KSD15 d
because the instances are easy for Lcg solvers.

4.2. Lower Bound Computation

The lower bound computation tries to solve Rcpsps in a destructive way by converging
to the optimal makespan from below, i.e., it repeatedly proves that there exists no
solution for current makespan considered and continues with an incremented makespan
by 1. If a solution found then it is the optimal one. For these experiments we use the
search heuristic HotStart as we did in [26, 27]. This heuristic is HotRestart (as
decribed earlier) but no restart. We used the same parameters as for HotRestart.
For the starting makespan, we choose the best known lower bounds on j60, j90, and
j120 recorded in the PSPLib at http://129.187.106.231/psplib/ and [34] at http://
vilim.eu/petr/cpaior2011-results.txt. On the other suites, the search starts from
makespan 1. Due to the tighter makespan, it is expected that the TtEf propagation will
perform better than for upper bound computation on the highly disjunctive instances.
The search was cut off at 10 minutes as in [26, 27].

Table 4 shows the results on AT, Pack, and Pack d restricted to the instances that
none of the methods could solve using the upper bound computation, that are 12, 16,
and 18 for AT, Pack, and Pack d, respectively. An entry a/b/c for method x means
that x achieved respectively a-times, b-times and c-times a worse, the same and a better
lower bound than tt. The entry +d is the sum of lower bounds’ differences of method
x to tt. On Pack and Pack d, ttef(c) and ttef clearly perform better than tt. On the
highly disjunctive instances in AT, ttef(c) and tt are almost balanced whereas tt could
generate better lower bounds on more instances as ttef. The lower bounds’ differences
on AT are dominated by the instance st103 4 for which ttef(c) and ttef retrieved a lower
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bound improvement of 54 and 53 time periods with respect to tt.
The more interesting results are presented in Tab. 5 because the best lower bounds

are known for all the remaining open instances (48, 77, 307 in j60, j90, j120).2 An
entry in a column +d shows the number of instances for that the corresponding method
could improve the lower bound by d time periods. On these instances, we run at first
the experiments with a runtime limit of one minute as it was done in the experiments
for TtEf propagation in [34] but he used a Cp solver without nogood learning. tt could
not improve any lower bound because its corresponding results are already recorded
in the PSPLib. ttef(c) and ttef improved the lower bounds of 59 and 183 instances,
respectively, which is about 13.7% and 42.4% of the open instances. Although, the
experiments in [34] were run on a slower machine3 the results confirm the importance
of nogood learning. For the experiments with 10 minutes runtime, we excluded tt due
to time constraints and expected inferior results to ttef(c) and ttef. With the extended
runtime, ttef(c) and ttef could improved the lower bounds of more instance, namely 151
and 264 instances, respectively, which is about 35.0% and 61.1%. Moreover, 3, 1, and
1 of the remaining open instances on j60, j90, and j120, respectively, could be solved
optimally. See App. B for the listing of the closed instances and the new lower bounds.

5. Conclusion and Outlook

We present explanations for the recently developed TtEf propagation of the global
cumulative constraint for lazy clause generation solvers. These explanations express an
energetic reasoning propagation which is a stronger propagation than the TtEf one.

Our implementation of this propagator was compared to time-table propagation in
lazy clause generation solvers on six benchmark suites. The preliminary results confirms
the importance of energy-based reasoning on highly disjunctive Rcpsps for Cp solvers
with nogood learning.

Moreover, our approach with TtEf propagation was able to close one instance. It
also improves the best known lower bounds for 264 of the remaining 432 remaining open
instances on Rcpsps from the PSPLib.

In the future, we want to integrate the extended edge-finding propagation into TtEf
propagation as it was originally proposed in [34], to perform experiments on cutting and
packing problems, and to study different variations of explanations for TtEf propaga-
tion. Furthermore, we want to look at a more efficient implementation of the TtEf
propagation as well as an implementation of energetic reasoning.
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A. TTEF propagation algorithms

Algorithm 1 shows the TtEf consistency check used. The outer loop (lines 2–16) iterates
over all distinctive possible end times for the time windows while the inner loop (lines
7–16) iterates over all possible start times. In line 11 (12), it checks whether a must
fully (partially) be executed in the current time window and further ones checked in the
same inner loop. If so it adds the required free energy units eEFa of a to E. In line 13,
it calculates the still available energy units in the time window [begin, end) taking the
energy units from the resource profile ttEn(a, b) into account. If this results in a resource
overload then a corresponding explanation is generated (line 15) and the algorithm fails;
otherwise, the algorithm succeeds.

Algorithm 1: TtEf consistency check.
Input : X an array of activities sorted in non-decreasing order of the earliest start time.
Input : Y an array of activities sorted in non-decreasing order of the latest completion time.

1 end =∞;
2 for y := n down to 1 do
3 b := Y [y];
4 if lctb = end then continue;
5 end := lctb;
6 E := 0;
7 for x := n down to 1 do
8 a := X[x];
9 if end ≤ esta then continue;

10 begin := esta;

11 if lcta ≤ end then E := E + eEFa ;

12 if lstEFa < end then E := E + ra · (end− lstEFa );
13 avail := R · (end− begin)− E − ttEn(a, b);
14 if avail < 0 then
15 explainOverload(begin, end);
16 return false;

17 return true;

Algorithm 2 shows the lower bounds propagation algorithm. As for Alg. 1 the outer
loop (lines 3–24) and inner loop (lines 7–24) iterate over the end and start times of the
time windows [begin, end), but require more book keeping. In line 6, it initialises E.
u, and enReqU where: E records the required energy units by the considered activities
that must fully or partially be run in the time window; and u stores the activity that
maximises min(eEFu , ru · (end− begin))− ru ·max(0, end− lstEFu ) and that value is saved
in enReqU . If a must be fully or partially be executed in the time window then the
corresponding energy units are added to E in lines 11 and 14, resp. The desired activity
for pruning is computed in lines 13, 15, and 16, whereas the available energy units are
calculated in line 17. In the case that there is not sufficient energy available then the
condition of line 18 holds and the algorithm determines the first possible start time for u
(lines 19, 20). If that is larger than the recorded earliest start time in est′u then the
algorithm generates the explanation (line 22) and postpones the update (line 23) after
finishing with the outer loop (line 25).
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Algorithm 2: TtEf lower bounds propagator on the start times.
Input : X an array of activities sorted in non-decreasing order of the earliest start time.
Input : Y an array of activities sorted in non-decreasing order of the latest completion time.

1 for i ∈ VEF do est′i := esti;
2 end :=∞; k := 0;
3 for y := n down to 1 do
4 b := Y [y];
5 if lctb = end then continue;
6 end := lctb; E := 0; u := −∞; enReqU := 0;
7 for x := n down to 1 do
8 a := X[x];
9 if end ≤ esta then continue;

10 begin := esta;

11 if lcta ≤ end then E := E + eEFa ;
12 else
13 enIn := ra ·max(0, end− lstEFa );
14 E := E + enIn;

15 enReqA := min(eEFa , ra · (end− esta))− enIn;
16 if enReqA > enReqU then u := a; enReqU := enReqA;

17 avail := R · (end− begin)− E − ttEn(a, b);
18 if enReqU > 0 and avail − enReqU < 0 then
19 rest := E − avail − ra ·max(0, end− lsta);
20 lbU := begin + drest/rue;
21 if est′u < lbU then
22 expl := explainUpdate(begin, end, u, est′u, lbU);
23 Update[++k] := (u, lbU, expl);
24 est′u := lbU ;

25 for z := 1 to k do updateLB(Update[z]);
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Table 6: New lower bounds on j60.
inst LB inst LB inst LB inst LB inst LB inst LB inst LB
9 1 85 9 5 81 9 6 106 9 7 103 9 8 95 9 10 89 13 1 105
13 2 103 13 3 84 13 4 98 13 7 82 13 8 115 13 9 96 13 10 113
25 2 96 25 4 106 25 6 106 29 1 97 29 6 144 29 7 115 29 8 97
41 3 90 41 10 106 45 1 90

Table 7: New lower bounds on j90.
inst LB inst LB inst LB inst LB inst LB inst LB inst LB
5 3 84 5 5 109 5 7 106 5 8 97 5 9 114 5 10 95 9 2 122
9 3 98 9 4 120 9 5 127 9 6 113 9 7 103 9 8 111 9 9 106
9 10 105 13 2 119 13 3 105 13 5 109 13 7 116 13 8 113 13 9 117
13 10 114 21 7 106 21 8 108 25 1 117 25 2 122 25 3 113 25 4 128
25 5 110 25 6 113 25 8 131 25 9 98 25 10 119 29 1 126 29 2 122
29 4 139 29 6 117 29 7 160 29 8 146 29 9 120 30 9 92 37 2 114
41 1 129 41 2 154 41 3 149 41 4 142 41 5 116 41 6 124 41 7 145
41 8 148 41 9 110 41 10 144 45 1 143 45 2 138 45 3 144 45 4 126
45 6 163 45 7 129 45 8 150 45 9 145 45 10 156 46 9 86

B. Closed Instances and New Lower Bounds on PSPLib

From the open instances, we closed the instances 9 3 (100), 9 9 (99), 25 10 (108) on j60,
5 6 (86) on j90, and 1 1 (105), 8 6 (85) on j120 where the number in brackets shows the
optimal makespan. We computed new lower bounds on the remaining open instances
from the PSPLib. Tables 6–8 list these new lower bounds where the column “inst” shows
the name of the instance and the column “LB” the corresponding new lower bound.

C. Best Lower and Upper Bounds Retrieved

For a later comparison, Tables 9–11 show the best lower and upper bounds for AT,
Pack, and Pack d retrieved by one of the methods tt, ttef(c), and ttef. The column
“inst” shows the instance name and the column “LB/UB” the corresponding lower and
upper bound. If these bounds are equal then only one number is given.

19



Table 8: New lower bounds on j120.
inst LB inst LB inst LB inst LB inst LB inst LB inst LB
6 1 134 6 2 127 6 5 117 6 6 141 6 8 141 6 9 150 6 10 158
7 1 99 7 3 98 7 4 106 7 6 116 7 7 114 7 8 93 7 9 87
7 10 112 8 2 102 8 5 100 8 9 90 8 10 92 9 4 85 11 1 157
11 2 147 11 3 189 11 4 178 11 5 194 11 6 192 11 7 149 11 8 153
11 10 164 12 1 126 12 2 112 12 4 122 12 5 155 12 6 116 13 1 124
13 3 116 13 4 109 13 6 96 13 9 83 14 2 91 14 5 94 14 7 90
16 1 181 16 3 221 16 4 191 16 6 195 16 8 183 17 5 124 17 6 134
18 8 102 18 9 89 18 10 97 26 1 155 26 2 159 26 3 158 26 4 161
26 5 139 26 6 171 26 7 147 26 8 168 26 9 161 26 10 178 27 1 107
27 2 110 27 3 142 27 4 105 27 5 106 27 6 133 27 7 119 27 8 136
27 9 121 27 10 111 28 1 106 31 1 181 31 2 176 31 3 160 31 4 195
31 5 187 31 6 182 31 7 191 31 8 176 31 9 176 31 10 202 32 1 144
32 2 123 32 5 133 32 6 122 32 8 132 33 1 105 33 2 107 33 3 102
33 4 107 33 8 107 33 9 109 34 1 76 34 2 103 34 3 99 34 5 102
36 1 201 36 3 218 36 5 213 36 7 196 36 9 203 37 2 141 37 5 195
37 8 169 37 9 138 38 1 105 38 2 119 38 4 138 38 6 119 38 7 103
38 10 137 39 2 105 40 1 80 42 1 107 46 1 172 46 2 187 46 3 163
46 5 136 46 7 158 46 9 157 46 10 175 47 1 130 47 3 119 47 4 120
47 5 126 47 6 128 47 7 114 47 8 124 47 10 128 48 4 123 51 1 186
51 2 200 51 3 193 51 4 197 51 6 193 51 7 185 51 8 186 51 9 190
51 10 201 52 1 161 52 2 169 52 3 126 52 4 157 52 5 158 52 6 183
52 7 142 52 8 148 52 9 142 52 10 131 53 1 138 53 2 109 53 4 138
53 5 109 53 6 101 53 8 135 53 10 124 54 1 102 54 5 107 54 6 104
54 8 100 54 9 105 57 1 173 57 2 151 57 3 176 57 5 170 57 6 176
57 7 156 57 9 157 58 2 122 58 3 117 58 4 138 58 5 116 58 6 135
58 7 143 58 8 126 58 9 126 59 5 104 59 6 112 59 8 107 59 9 117
59 10 128 60 3 88 60 7 91
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Table 9: Lower and upper bounds for AT.
inst LB/UB inst LB/UB inst LB/UB inst LB/UB inst LB/UB
27 1 41 27 2 53 27 3 68 27 4 112/114 27 5 56
27 6 73 27 7 54 27 8 95 27 9 38 27 10 45
27 11 57 27 12 73 27 13 38 27 14 55 27 15 46
27 16 75 27 17 55 27 18 55 27 19 79 27 20 152
27 21 92 27 22 86 27 23 82 27 24 106 27 25 51
27 26 53 27 27 58 27 28 95 27 29 51 27 30 76
27 31 75 27 32 82 27 33 66 27 34 61 27 35 115
27 36 146 27 37 78 27 38 100 27 39 119 27 40 130
27 41 60 27 42 53 27 43 75 27 44 88 27 45 49
27 46 65 27 47 75 27 48 80 51 1 98 51 2 96
51 3 133 51 4 161/219 51 5 97 51 6 126 51 7 120
51 8 194 51 9 74 51 10 73 51 11 99 51 12 116/137
51 13 84 51 14 86 51 15 86 51 16 132 51 17 84
51 18 99 51 19 170 51 20 274 51 21 145 51 22 168
51 23 183 51 24 228 51 25 95 51 26 89 51 27 113
51 28 164 51 29 98 51 30 105 51 31 130 51 32 139
51 33 116 51 34 115 51 35 173 51 36 300 51 37 162
51 38 177 51 39 189 51 40 218 51 41 102 51 42 108
51 43 121 51 44 174 51 45 122 51 46 125 51 47 151
51 48 167 103 1 158 103 2 182 103 3 216/259 103 4 280/445
103 5 191 103 6 207/209 103 7 234/293 103 8 207/294 103 9 139
103 10 119 103 11 160/169 103 12 213/302 103 13 127 103 14 152
103 15 157/168 103 16 167/179 103 17 209 103 18 232 103 19 301
103 20 475 103 21 276 103 22 295 103 23 368 103 24 449
103 25 177 103 26 183 103 27 199 103 28 295 103 29 225
103 30 231 103 31 227 103 32 281 103 33 220 103 34 264
103 35 341 103 36 575 103 37 327 103 38 376 103 39 389
103 40 451 103 41 191 103 42 187 103 43 260 103 44 375
103 45 216 103 46 251 103 47 262 103 48 300

Table 10: Lower and upper bounds for Pack.
inst LB/UB inst LB/UB inst LB/UB inst LB/UB inst LB/UB inst LB/UB
001 23 002 32 003 29 004 43/44 005 42 006 47
007 41 008 44 009 57/72 010 38 011 44 012 45
013 36 014 45 015 43 016 63 017 62 018 60
019 59 020 62 021 51 022 59 023 51 024 56
025 69/70 026 54 027 55 028 64 029 43 030 20
031 70 032 80 033 78 034 73 035 73/77 036 100/106
037 116/138 038 86 039 99/111 040 87/91 041 27 042 29
043 105 044 103 045 86/87 046 110/128 047 103/107 048 76/77
049 29 050 94/109 051 29 052 85 053 97/113 054 92/100
055 91/97
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Table 11: Lower and upper bounds for Pack d.
inst LB/UB inst LB/UB inst LB/UB inst LB/UB inst LB/UB
001 612 002 745/747 003 624/625 004 1381 005 983
006 1119 007 1082 008 1274 009 1593/1951 010 1216
011 940 012 1234/1241 013 829 014 1565 015 1198
016 1783/1813 017 1641/1651 018 1462/1480 019 1526/1542 020 1661
021 1606 022 1787 023 1092 024 1625 025 2061/2147
026 926 027 1789/1793 028 1897/1962 029 1233 030 597
031 1949 032 2943 033 3390 034 2371 035 2305
036 2175/2191 037 3325/3614 038 2180 039 2730/2734 040 3024
041 679 042 838 043 2439 044 3050 045 2712
046 3243/3277 047 2740/2745 048 2446 049 675 050 2687/2716
051 838 052 2253 053 2521 054 2750 055 2628
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