Skip to main content

Graph Characteristics from the Schrödinger Operator

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7877))

  • 1959 Accesses

Abstract

In this paper, we show how the Schrödinger operator may be applied to the problem of graph characterization. The motivation is the similarity of the Schrödinger equation to the heat difussion equation, and the fact that the heat kernel has been used in the past for graph characterization. Our hypothesis is that due to the quantum nature of the Schrödinger operator, it may be capable of providing richer sources of information than the heat kernel. Specifically the possibility of complex amplitudes with both negative and positive components, allows quantum interferences which strongly reflect symmetry patterns in graph structure. We propose a graph characterization based on the Fourier analysis of the quantum equivalent of the heat flow trace. Our experiments demonstrate that this new method can be succesfully applied to characterize different types of graph structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aziz, F., Wilson, R.C., Hancock, E.R.: Graph Characterization via Backtrackless Paths. In: Pelillo, M., Hancock, E.R. (eds.) SIMBAD 2011. LNCS, vol. 7005, pp. 149–162. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Peng, R., Wilson, R., Hancock, E.: Graph Characterization vi Ihara Coefficients. IEEE Transactions on Neural Networks 22(2), 233–245 (2011)

    Article  Google Scholar 

  3. Das, K.C.: Extremal Graph Characterization from the Bounds of the Spectral Radius of Weighted Graphs. Applied Mathematics and Computation 217(18), 7420–7426 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Escolano, F., Hancock, E., Lozano, M.A.: Heat Diffusion: Thermodynamic Depth Complexity of Networks. Physical Review E 85(3), 036206(15) (2012)

    Google Scholar 

  5. Xiao, B., Hancock, E., Wilson, R.: Graph Characteristics from the Heat Kernel Trace. Pattern Reognition 42(11), 2589–2606 (2009)

    Article  MATH  Google Scholar 

  6. Aubry, M., Schlickewei, U., Cremers, D.: The Wave Kernel Signature: A Quantum Mechanical Approach To Shape Analysis. In: IEEE International Conference on Computer Vision (ICCV), Workshop on Dynamic Shape Capture and Analysis (4DMOD) (2011)

    Google Scholar 

  7. Rossi, L., Torsello, A., Hancock, E.R.: Approximate Axial Symmetries from Continuous Time Quantum Walks. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR & SPR 2012. LNCS, vol. 7626, pp. 144–152. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Emms, D., Wilson, R.C., Hancock, E.R.: Graph Embedding Using Quantum Commute Times. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 371–382. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Farhi, E., Gutmann, S.: Quantum Computation and Decision Trees. Physical Review A 58, 915–928 (1998)

    Article  MathSciNet  Google Scholar 

  10. Erdös, P., Rényi, A.: On Random Graphs. I. Publicationes Mathematicae 6, 290–297 (1959)

    MATH  Google Scholar 

  11. Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  12. Watts, D.J., Strogatz, S.H.: Collective Dynamics of ’Small-World’ Networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  13. Han, L., Escolano, F., Hancock, E., Wilson, R.: Graph Characterizations From Von Neumann Entropy. Pattern Recognition Letters 33(15), 1958–1967 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suau, P., Hancock, E.R., Escolano, F. (2013). Graph Characteristics from the Schrödinger Operator. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2013. Lecture Notes in Computer Science, vol 7877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38221-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38221-5_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38220-8

  • Online ISBN: 978-3-642-38221-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics