Skip to main content

On the Evaluation of Graph Centrality for Shape Matching

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7877))

Abstract

Graph centrality has been extensively applied in Social Network Analysis to model the interaction of actors and the information flow inside a graph. In this paper, we investigate the usage of graph centralities in the Shape Matching task. We create a graph-based representation of a shape and describe this graph by using different centrality measures. We build a Naive Bayes classifier whose input feature vector consists of the measurements obtained by the centralities and evaluate the different performances for each centrality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bavelas, A.: A mathematical model for group structure. Human Organization 7(3), 16–30 (1948)

    Google Scholar 

  2. Black, P.E.: Johnson’s algorithm. Dictionary of Algorithms and Data Structures (2004)

    Google Scholar 

  3. Blum, H.: Biological shape and visual science (part I). Journal of Theoretical Biology 38, 205–287 (1973)

    Article  Google Scholar 

  4. Borgatti, S.P., Everett, M.G.: A graph-theoretic perspective on centrality. Social Networks 28(4), 466–484 (2006)

    Article  Google Scholar 

  5. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)

    Article  Google Scholar 

  6. Correa, C., Ma, K.-L.: Visualizing social networks. In: Aggarwal, C.C. (ed.) Social Network Data Analytics, pp. 307–326. Springer, US (2011)

    Google Scholar 

  7. Cukierski, W., Foran, D.: Using betweenness centrality to identify manifold shortcuts. In: IEEE International Conference on Data Mining Workshops, ICDMW 2008, pp. 949–958 (December 2008)

    Google Scholar 

  8. Felzenszwalb, P., Schwartz, J.: Hierarchical matching of deformable shapes. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1 –8 (June 2007)

    Google Scholar 

  9. Freeman, L.: Centrality in social networks: Conceptual clarification. Social Networks 1(3), 215–239 (1979)

    Article  Google Scholar 

  10. Frobenius, G.: Über Matrizen aus nicht negativen Elementen. In: Sitzungsberichte Königlich Preussichen Akademie der Wissenschaft, pp. 456–477 (1912)

    Google Scholar 

  11. Iglesias-Ham, M., García-Reyes, E., Kropatsch, W., Artner, N.: Convex deficiencies for human action recognition. Journal of Intelligent & Robotic Systems 64, 353–364 (2011)

    Google Scholar 

  12. de Silva, V., Tenenbaum, J.B., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  13. Mukherjee, S., Biswas, S., Mukherjee, D.: Recognizing human action at a distance in video by key poses. IEEE Transactions on Circuits and Systems for Video Technology 21(9), 1228–1241 (2011)

    Article  Google Scholar 

  14. Okamoto, K., Chen, W., Li, X.-Y.: Ranking of closeness centrality for large-scale social networks. In: Preparata, F.P., Wu, X., Yin, J. (eds.) FAW 2008. LNCS, vol. 5059, pp. 186–195. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Sebastian, T., Klein, P., Kimia, B.: Recognition of shapes by editing their shock graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(5), 550–571 (2004)

    Article  Google Scholar 

  16. Sharvit, D., Chan, J., Tek, H., Kimia, B.B.: Symmetry-based indexing of image databases. Journal of Visual Communication and Image Representation 9(4), 366–380 (1998)

    Article  Google Scholar 

  17. Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.: Shock graphs and shape matching. International Journal of Computer Vision 35, 13–32 (1999)

    Article  Google Scholar 

  18. Torsello, A., Hancock, E.R.: A skeletal measure of 2d shape similarity. Computer Vision and Image Understanding 95(1), 1–29 (2004)

    Article  Google Scholar 

  19. Wasserman, S., Faust, K.: Social Network Analysis. Methods and Applications. Cambridge University Press, New York (1994)

    Book  Google Scholar 

  20. Zhu, L., Chen, Y., Yuille, A.: Learning a hierarchical deformable template for rapid deformable object parsing. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(6), 1029–1043 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Sousa, S., Artner, N.M., Kropatsch, W.G. (2013). On the Evaluation of Graph Centrality for Shape Matching. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2013. Lecture Notes in Computer Science, vol 7877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38221-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38221-5_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38220-8

  • Online ISBN: 978-3-642-38221-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics