Skip to main content

Estimation of Distribution Algorithm for the Max-Cut Problem

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7877))

Abstract

In this paper, we investigate the Max-Cut problem and propose a probabilistic heuristic to address its classic and weighted version. Our approach is based on the Estimation of Distribution Algorithm (EDA) that creates a population of individuals capable of evolving at each generation towards the global solution. We have applied the Max-Cut problem for image segmentation and defined the edges’ weights as a modified function of the L2 norm between the RGB values of nodes. The main goal of this paper is to introduce a heuristic for Max-Cut and additionally to investigate how it can be applied in the segmentation context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation (Genetic Algorithms and Evolutionary Computation). Springer (October 2001)

    Google Scholar 

  2. Bäck, T.: Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  3. Baluja, S.: Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning (1994)

    Google Scholar 

  4. Boykov, Y., Lea, G.F.: Graph Cuts and Efficient N-D Image Segmentation. Int. J. Comput. Vision 70(2), 109–131 (2006)

    Article  Google Scholar 

  5. Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA, pp. 648–655. IEEE Computer Society (1998); Also as Cornell CS technical report TR97-1658, December 3 (1997)

    Google Scholar 

  6. Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images, vol. 1, pp. 105–112 (2001)

    Google Scholar 

  7. Chowdhury, N., Murhty, C.: Minimal spanning tree based clustering technique: Relationship whith bayes classifier. Pattern Recognition 30(11), 1919–1929 (1997)

    Article  Google Scholar 

  8. Duarte, A., Sánchez, A., Fernández, F., Cabido, R.: A low-level hybridization between memetic algorithm and vns for the max-cut problem. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, GECCO 2005, pp. 999–1006. ACM, New York (2005)

    Chapter  Google Scholar 

  9. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. International Journal of Computer Vision 59(2), 167–181 (2004)

    Article  Google Scholar 

  10. Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Checz Mathematical Journal 25(100), 619–633 (1975)

    MathSciNet  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  12. Geman, S., Geman, D.: Stochastic relaxation, gibbs distribution, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  13. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hadlock, F.: Finding a Maximum Cut of a Planar Graph in Polynomial Time. SIAM Journal on Computing 4(3), 221–225 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Håstad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Haxhimusa, Y., Kropatsch, W.: Segmentation Graph Hierarchies. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 343–351. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Jain, A.K., Dubes, R.: Algorithms for Clustering Data. Prentice Hall, Berlin (1988)

    Google Scholar 

  18. Kaporis, A.C., Kirousis, L.M., Stavropoulos, E.C.: Approximating almost all instances of max-cut within a ratio above the håstad threshold. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 432–443. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)

    Google Scholar 

  20. Lance, J., Williams, W.: A general theory of classificatory sorting strategies: I hierarchical systems. Journal on Computing 9, 373–380 (1967)

    Article  Google Scholar 

  21. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral feature vectors for graph clustering. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SSPR & SPR 2002. LNCS, vol. 2396, pp. 83–93. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. 8th Int’l Conf. Computer Vision, vol. 2, pp. 416–423 (July 2001)

    Google Scholar 

  23. Noma, A., Graciano, A.B., Cesar Jr., R.M., Consularo, L.A., Bloch, I.: Interactive image segmentation by matching attributed relational graphs. Pattern Recognition 45(3), 1159–1179 (2012)

    Article  Google Scholar 

  24. Pavan, M., Pelillo, M.: Graph-theoretic approach to clustring and segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 145–152. IEEE Computer Society (2003)

    Google Scholar 

  25. Rother, C., Kolmogorov, V., Blake, A.: “grabcut”: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)

    Article  Google Scholar 

  26. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  27. Urquhart, R.: Graph theoretical clustering based on limited neighborhood sets. Pattern Recognition 15(3), 173–187 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu, Z., Leahy, R.M.: An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(11), 1101–1113 (1993)

    Article  Google Scholar 

  29. Zahn, C.: Graph-theoretical methods for detecting and describing gestal clusters. IEEE Transaction on Computing 20, 68–86 (1971)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Sousa, S., Haxhimusa, Y., Kropatsch, W.G. (2013). Estimation of Distribution Algorithm for the Max-Cut Problem. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2013. Lecture Notes in Computer Science, vol 7877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38221-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38221-5_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38220-8

  • Online ISBN: 978-3-642-38221-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics