Abstract
Clique clustering is the problem of partitioning a graph into cliques so that some objective function is optimized. In online clustering, the input graph is given one vertex at a time, and any vertices that have previously been clustered together are not allowed to be separated. The objective here is to maintain a clustering the never deviates too far in the objective function compared to the optimal solution. We give a constant competitive upper bound for online clique clustering, where the objective function is to maximize the number of edges inside the clusters. We also give almost matching upper and lower bounds on the competitive ratio for online clique clustering, where we want to minimize the number of edges between clusters. In addition, we prove that the greedy method only gives linear competitive ratio for these problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alvey, S., Borneman, J., Chrobak, M., Crowley, D., Figueroa, A., Hartin, R., Jiang, G., Scupham, A.T., Valinsky, L., Vedova, D., Yin, B.: Analysis of bacterial community composition by oligonucleotide fingerprinting of rRNA genes. Applied and Environmental Microbiology 68, 3243–3250 (2002)
Bansal, N., Blum, A., Chawla, S.: Correlation Clustering. Machine Learning 56(1-3), 89–113 (2004)
Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering Gene Expression Patterns. Journal of Computational Biology 6(3/4), 281–297 (1999)
Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental Clustering and Dynamic Information Retrieval. SIAM J. Comput. 33(6), 1417–1440 (2004)
Charikar, M., Guruswami, V., Wirth, A.: Clustering with Qualitative Information. In: Proc. 44th Annual Symposium on Foundations of Computer Science, FOCS 2003, pp. 524–533 (2003)
Demaine, E.D., Immorlica, N.: Correlation Clustering with Partial Information. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 1–13. Springer, Heidelberg (2003)
Dessmark, A., Jansson, J., Lingas, A., Lundell, E., Persson, M.: On the Approximability of Maximum and Minimum Edge Clique Partition Problems. Int. J. Found. Comput. Sci. 18(2), 217–226 (2007)
Figueroa, A., Borneman, J., Jiang, T.: Clustering binary fingerprint vectors with missing values for DNA array data analysis. Journal of Computational Biology 11(5), 887–901 (2004)
Figueroa, A., Goldstein, A., Jiang, T., Kurowski, M., Lingas, A., Persson, M.: Approximate clustering of incomplete fingerprints. J. Discrete Algorithms 6(1), 103–108 (2008)
Mathieu, C., Sankur, O., Schudy, W.: Online Correlation Clustering. In: Proc. 7th International Symposium on Theoretical Aspects of Computer Science (STACS 2010), pp. 573–584 (2010)
Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 379–390. Springer, Heidelberg (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fabijan, A., Nilsson, B.J., Persson, M. (2013). Competitive Online Clique Clustering. In: Spirakis, P.G., Serna, M. (eds) Algorithms and Complexity. CIAC 2013. Lecture Notes in Computer Science, vol 7878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38233-8_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-38233-8_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38232-1
Online ISBN: 978-3-642-38233-8
eBook Packages: Computer ScienceComputer Science (R0)