Skip to main content

Parameterized Complexity and Kernel Bounds for Hard Planning Problems

  • Conference paper
Algorithms and Complexity (CIAC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7878))

Included in the following conference series:

Abstract

The propositional planning problem is a notoriously difficult computational problem. Downey et al. (1999) initiated the parameterized analysis of planning (with plan length as the parameter) and Bäckström et al. (2012) picked up this line of research and provided an extensive parameterized analysis under various restrictions, leaving open only one stubborn case. We continue this work and provide a full classification. In particular, we show that the case when actions have no preconditions and at most e postconditions is fixed-parameter tractable if e ≤ 2 and W[1]-complete otherwise. We show fixed-parameter tractability by a reduction to a variant of the Steiner Tree problem; this problem has been shown fixed-parameter tractable by Guo et al. (2007). If a problem is fixed-parameter tractable, then it admits a polynomial-time self-reduction to instances whose input size is bounded by a function of the parameter, called the kernel. For some problems, this function is even polynomial which has desirable computational implications. Recent research in parameterized complexity has focused on classifying fixed-parameter tractable problems on whether they admit polynomial kernels or not. We revisit all the previously obtained restrictions of planning that are fixed-parameter tractable and show that none of them admits a polynomial kernel unless the polynomial hierarchy collapses to its third level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bäckström, C., Chen, Y., Jonsson, P., Ordyniak, S., Szeider, S.: The complexity of planning revisited - a parameterized analysis. In: Hoffmann, J., Selman, B. (eds.) Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, Toronto, Ontario, Canada, July 22-26. AAAI Press (2012)

    Google Scholar 

  2. Bäckström, C., Klein, I.: Planning in polynomial time: the SAS-PUBS class. Comput. Intelligence 7, 181–197 (1991)

    Article  Google Scholar 

  3. Bäckström, C., Nebel, B.: Complexity results for SAS+ planning. Comput. Intelligence 11, 625–656 (1995)

    Article  MathSciNet  Google Scholar 

  4. Bylander, T.: The computational complexity of propositional STRIPS planning. Artificial Intelligence 69(1-2), 165–204 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. of Computer and System Sciences 75(8), 423–434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 635–646. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Strong computational lower bounds via parameterized complexity. J. of Computer and System Sciences 72(8), 1346–1367 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Downey, R., Fellows, M.R., Stege, U.: Parameterized complexity: A framework for systematically confronting computational intractability. In: Contemporary Trends in Discrete Mathematics: From DIMACS and DIMATIA to the Future. AMS-DIMACS, vol. 49, pp. 49–99. American Mathematical Society (1999)

    Google Scholar 

  9. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)

    Google Scholar 

  10. Fellows, M.R.: The lost continent of polynomial time: Preprocessing and kernelization. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 276–277. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series, vol. XIV. Springer (2006)

    Google Scholar 

  12. Fomin, F.V.: Kernelization. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 107–108. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Ghallab, M., Nau, D.S., Traverso, P.: Automated planning - theory and practice. Elsevier (2004)

    Google Scholar 

  14. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38(2), 31–45 (2007)

    Article  Google Scholar 

  15. Guo, J., Niedermeier, R., Suchý, O.: Parameterized complexity of arc-weighted directed steiner problems. SIAM J. Discrete Math. 25(2), 583–599 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. J. of Computer and System Sciences 67(4), 757–771 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yap, C.-K.: Some consequences of nonuniform conditions on uniform classes. Theoretical Computer Science 26(3), 287–300 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bäckström, C., Jonsson, P., Ordyniak, S., Szeider, S. (2013). Parameterized Complexity and Kernel Bounds for Hard Planning Problems. In: Spirakis, P.G., Serna, M. (eds) Algorithms and Complexity. CIAC 2013. Lecture Notes in Computer Science, vol 7878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38233-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38233-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38232-1

  • Online ISBN: 978-3-642-38233-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics