Skip to main content

Shortest Paths with Bundles and Non-additive Weights Is Hard

  • Conference paper
Algorithms and Complexity (CIAC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7878))

Included in the following conference series:

  • 912 Accesses

Abstract

In a standard path auction, all of the edges in a graph are sold as separate entities, each edge having a single cost. We consider a generalisation in which a graph is partitioned and each subset of edges has a unique owner. We show that if the owner is allowed to apply a non-additive pricing structure then the winner determination problem becomes NP-hard (in contrast with the quadratic time algorithm for the standard additive pricing model). We show that this holds even if the owners have subsets of only 2 edges. For subadditive pricing (e.g. volume discounts), there is a trivial approximation ratio of the size of the largest subset. Where the size of the subsets is unbounded then we show that approximation to within a Ω(logn) factor is hard. For the superadditive case we show that approximation with a factor of n ε for any ε > 0 is hard even when the subsets are of size at most 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Archer, A., Papadimitriou, C., Talwar, K., Tardos, E.: An approximate truthful mechanism for combinatorial auctions with single parameter agents. In: Procs. of 14th SODA, pp. 205–214 (2003)

    Google Scholar 

  2. Archer, A., Tardos, E.: Frugal path mechanisms. In: Procs. of 13th SODA, pp. 991–999 (2002)

    Google Scholar 

  3. Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for utilitarian mechanism design. SIAM J. Comput. 40(6), 1587–1622 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, N., Elkind, E., Gravin, N., Petrov, F.: Frugal mechanism design via spectral techniques. In: Procs. of 51st FOCS, pp. 755–764 (2010)

    Google Scholar 

  5. Clarke, E.H.: Multipart pricing of public goods. Public Choice 11(1) (1971)

    Google Scholar 

  6. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  7. Du, Y., Sami, R., Shi, Y.: Path auctions with multiple edge ownership. Theoretical Computer Science 411(1), 293–300 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Elkind, E., Goldberg, L.A., Goldberg, P.W.: Frugality ratios and improved truthful mechanisms for vertex cover. In: Procs. of the 8th ACM-EC, pp. 336–345 (2007)

    Google Scholar 

  9. Elkind, E., Sahai, A., Steiglitz, K.: Frugality in path auctions. In: Procs. of 15th SODA, pp. 701–709 (2004)

    Google Scholar 

  10. Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45, 314–318 (1998)

    Article  MathSciNet  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness (1979)

    Google Scholar 

  12. Goldberg, P.W., McCabe, A.: Commodity auctions and frugality ratios. In: Serna, M. (ed.) SAGT 2012. LNCS, vol. 7615, pp. 180–191. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Groves, T.: Incentives in teams. Econometrica 41(4), 617–631 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the minimum set cover problem. SIAM Journal on Computing 35(1), 189–200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kann, V.: Polynomially bounded minimization problems that are hard to approximate. Nord. J. Comput. 1(3), 317–331 (1994)

    MathSciNet  MATH  Google Scholar 

  16. Karlin, A.R., Kempe, D., Tamir, T.: Beyond VCG: Frugality of truthful mechanisms. In: Procs. of 46th FOCS, pp. 615–626 (2005)

    Google Scholar 

  17. Kempe, D., Salek, M., Moore, C.: Frugal and truthful auctions for vertex covers, flows and cuts. In: Procs. of 51st FOCS, pp. 745–754 (2010)

    Google Scholar 

  18. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press (2007)

    Google Scholar 

  19. Phillips, R.: Pricing and Revenue Optimization. Stanford University Press (1995)

    Google Scholar 

  20. Stremersch, S., Tellis, G.J.: Strategic Bundling of Products and Prices: A New Synthesis for Marketing. Journal of Marketing 66(1), 55–72 (2000, 2002)

    Google Scholar 

  21. Talwar, K.: The price of truth: Frugality in truthful mechanisms. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 608–619. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  22. Vickrey, W.: Counterspeculation, Auctions, and Competitive Sealed Tenders. The Journal of Finance 16(1), 8–37 (1961)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldberg, P.W., McCabe, A. (2013). Shortest Paths with Bundles and Non-additive Weights Is Hard. In: Spirakis, P.G., Serna, M. (eds) Algorithms and Complexity. CIAC 2013. Lecture Notes in Computer Science, vol 7878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38233-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38233-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38232-1

  • Online ISBN: 978-3-642-38233-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics