Skip to main content

Sparse Linear Complementarity Problems

  • Conference paper
Algorithms and Complexity (CIAC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7878))

Included in the following conference series:

Abstract

In this paper, we study the sparse linear complementarity problem, denoted by k-LCP: the coefficient matrix has at most k nonzero entries per row. It is known that 1-LCP is solvable in linear time, while 3-LCP is strongly NP-hard. We show that 2-LCP is strongly NP-hard, while it can be solved in O(n 3 logn) time if it is sign-balanced, i.e., each row has at most one positive and one negative entries, where n is the number of constraints. Our second result matches with the currently best known complexity bound for the corresponding sparse linear feasibility problem. In addition, we show that an integer variant of sign-balanced 2-LCP is weakly NP-hard and pseudo-polynomially solvable, and the generalized 1-LCP is strongly NP-hard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aspvall, B., Shiloach, Y.: A polynomial time algorithm for solving systems of linear inequalities with two variables per inequality. SIAM Journal on Computing 9, 827–845 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Björklund, H., Svensson, O., Vorobyov, S.: Linear complementarity algorithms for mean payoff games. Technical Report 2005-05, DIMACS: Center for Discrete Mathematics and Theoretical Computer Science (2005)

    Google Scholar 

  3. Chandrasekaran, R.: A special case of the complementary pivot problem. Opsearch 7, 263–268 (1970)

    MathSciNet  Google Scholar 

  4. Chandrasekaran, R.: Integer programming problems for which a simple rounding type algorithm works. Combinatorial Optimization 8, 101–106 (1984)

    MathSciNet  Google Scholar 

  5. Chandrasekaran, R., Kabadi, S.N., Sridhar, R.: Integer solution for linear complementarity problem. Mathematics of Operations Research 23, 390–402 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, X., Deng, X., Teng, S.-H.: Sparse games are hard. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 262–273. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Chung, S.J.: NP-completeness of the linear complementarity problem. Journal of Optimization Theory and Applications 60, 393–399 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Codenotti, B., Leoncini, M., Resta, G.: Efficient computation of nash equilibria for very sparse win-lose bimatrix games. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 232–243. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Cohen, E., Megiddo, N.: Improved algorithms for linear inequalities with two variables per inequality. SIAM Journal on Computing 23, 1313–1347 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cottle, R.W.: The principal pivoting method of quadratic programming. In: Dantzig, G.B., Veinott, A.F. (eds.) Mathematics of Decision Sciences, Part 1, pp. 142–162. American Mathematical Society, Providence R. I. (1968)

    Google Scholar 

  11. Cottle, R.W., Dantzig, G.B.: Complementary pivot theory of mathematical programming. Linear Algebra and Its Applications 1, 103–125 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cottle, R.W., Dantzig, G.B.: A generalization of the linear complementarity problem. Journal on Combinatorial Theory 8, 79–90 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, Boston (1992)

    MATH  Google Scholar 

  14. Cottle, R.W., Veinott, A.F.: Polyhedral sets having a least element. Mathematical Programming 3, 238–249 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cunningham, W.H., Geelen, J.F.: Integral solutions of linear complementarity problems. Mathematics of Operations Research 23, 61–68 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Daskalakis, C., Papadimitriou, C.H.: On oblivious PTAS’s for Nash equilibrium. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 75–84 (2009)

    Google Scholar 

  17. Du Val, P.: The unloading problem for plane curves. American Journal of Mathematics 62, 307–311 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hermelin, D., Huang, C., Kratsch, S., Wahlström, M.: Parameterized two-player Nash equilibrium. Algorithmica, 1–15 (2012)

    Google Scholar 

  19. Hochbaum, D.S., Megiddo, N., Naor, J., Tamir, A.: Tight bounds and 2-approximation algorithms for integer programs with two variables per inequality. Mathematical Programming 62, 69–83 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hochbaum, D.S., Naor, J.: Simple and fast algorithms for linear and integer programs with two variables per inequality. SIAM Journal on Computing 23, 1179–1192 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kakimura, N.: Sign-solvable linear complementarity problems. Linear Algebra and Its Applications 429, 606–616 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kojima, M., Megiddo, N., Noma, T., Yoshise, A.: A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems. LNCS, vol. 538. Springer, Heidelberg (1991)

    Book  Google Scholar 

  23. Lagarias, J.C.: The computational complexity of simultaneous Diophantine approximation problems. SIAM Journal on Computing 14, 196–209 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lemke, C.E.: Bimatrix equilibrium points and mathematical programming. Management Science 11, 681–689 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mangasarian, O.L.: Linear complementarity problems solvable by a single linear program. Mathematical Programming 10, 263–270 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Murty, K.G.: Linear Complementarity, Linear and Nonlinear Programming. Internet Edition (1997)

    Google Scholar 

  27. Samelson, H., Thrall, R.M., Wesler, O.: A partition theorem for Euclidean n-space. Proceedings of the American Mathematical Society 9, 805–807 (1958)

    MathSciNet  MATH  Google Scholar 

  28. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the 10th Annual ACM Symposium on Theory of Computing, pp. 216–226 (1978)

    Google Scholar 

  29. Shostak, R.: Deciding linear inequalities by computing loop residues. Journal of the ACM 28, 769–779 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sumita, H., Kakimura, N., Makino, K.: Sparse linear complementarity problems. METR 2013-02, Department of Mathematical Informatics, University of Tokyo (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sumita, H., Kakimura, N., Makino, K. (2013). Sparse Linear Complementarity Problems. In: Spirakis, P.G., Serna, M. (eds) Algorithms and Complexity. CIAC 2013. Lecture Notes in Computer Science, vol 7878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38233-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38233-8_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38232-1

  • Online ISBN: 978-3-642-38233-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics