Abstract
One of the earliest and best-known application of the probabilistic method is the proof of existence of a 2 logn-Ramsey graph, i.e., a graph with n nodes that contains no clique or independent set of size 2 logn. The explicit construction of such a graph is a major open problem. We show that a reasonable hardness assumption implies that in polynomial time one can construct a list containing polylog(n) graphs such that most of them are 2 logn-Ramsey.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple constructions of almost k-wise independent random variables. Random Structures and Algorithms 3(3), 289–304 (1992)
Barak, B., Rao, A., Shaltiel, R., Wigderson, A.: 2-source dispersers for sub-polynomial entropy and Ramsey graphs beating the Frankl-Wilson construction. In: Kleinberg, J.M. (ed.) STOC, pp. 671–680. ACM (2006)
Fortnow, L.: Full derandomization. Computational Complexity blog (July 31, 2006)
Frankl, P., Wilson, R.M.: Intersection theorems with geometric consequences. Combinatorica 1(4), 357–368 (1981)
Gasarch, W.I., Haeupler, B.: Lower bounds on van der Waerden numbers: Randomized- and deterministic-constructive. Electr. J. Comb. 18(1) (2011)
Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: Derandomizing the XOR lemma. In: Proceedings of the 29th Annual ACM Symposium on the Theory of Computing (STOC 1997), pp. 220–229. Association for Computing Machinery, New York (1997)
Klivans, A., van Melkebeek, D.: Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput. 31(5), 1501–1526 (2002)
Miltersen, P.B.: Derandomizing complexity classes. In: Pardalos, P., Reif, J., Rolim, J. (eds.) Handbook on Randomized Computing, Volume II. Kluwer Academic Publishers (2001)
Moser, R.A.: A constructive proof of the Lovász local lemma. In: Mitzenmacher, M. (ed.) STOC, pp. 343–350. ACM (2009)
Moore, C., Russell, A.: Optimal epsilon-biased sets with just a little randomness. CoRR, abs/1205.6218 (2012)
Moser, R.A., Tardos, G.: A constructive proof of the general Lovász local lemma. J. ACM 57(2) (2010)
Naor, M.: Constructing Ramsey graphs from small probability spaces. Technical report, IBM Research Report RJ 8810 (70940) (1992)
Naor, J., Naor, M.: Small-bias probability spaces: Efficient constructions and applications. SIAM Journal on Computing 22(4), 838–856 (1993)
Nisan, N., Wigderson, A.: Hardness vs. randomness. Journal of Computer and System Sciences 49, 149–167 (1994)
Santhanam, R.: The complexity of explicit constructions. Theory Comput. Syst. 51(3), 297–312 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zimand, M. (2013). On Efficient Constructions of Short Lists Containing Mostly Ramsey Graphs. In: Chan, TH.H., Lau, L.C., Trevisan, L. (eds) Theory and Applications of Models of Computation. TAMC 2013. Lecture Notes in Computer Science, vol 7876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38236-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-38236-9_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38235-2
Online ISBN: 978-3-642-38236-9
eBook Packages: Computer ScienceComputer Science (R0)