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On efficient constructions of short lists containing
mostly Ramsey graphs

Marius Zimand *

Abstract

One of the earliest and best-known application of the probabilistic method is
the proof of existence of a 2log n-Ramsey graph, i.e., a graph with n nodes that
contains no clique or independent set of size 2logn. The explicit construction
of such a graph is a major open problem. We show that a reasonable hardness
assumption implies that in polynomial time one can construct a list containing
polylog(n) graphs such that most of them are 2log n-Ramsey.

1 Introduction

A k-Ramsey graph is a graph G that has no clique of size k and no independent set of
size k. It is known that for all sufficiently large n, there exists a 2log n-Ramsey graph
with n vertices. The proof is nonconstructive, but of course such a graph can be built
in exponential time by exhaustive search. A major line of research is dedicated to
constructing a k-Ramsey graph with n vertices with k£ as small as possible and in
time that is bounded by a small function in n, for example in polynomial time, or
in quasi-polynomial time, DTIME[2P°¥°8(™)]  Till recently, the best polynomial-time
construction of a k-Ramsey graph with n vertices has been the one by Frankl and
Wilson [FWS8I], for k = 200V1%8™) - Using deep results from additive combinatorics
and the theory of randomness extractors and dispersers, Barak, Rao, Shaltiel and
Wigderson [BRSW06] improved this to k = 20°6m°"  Notice that this is still far off
from k = 2logn.

As usual when dealing with very difficult problems, it is natural to consider easier
versions. In this case, one would like to see if it is possible to efficiently construct a
small list of n-vertices graphs with the guarantee that one of them is 2 log n-Ramsey.
The following positive results hold.
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Theorem 1.1 There exists a quasipolynomial-time algorithm that on input 1™ returns
a list with 28’ " graphs with n vertices, and most of them are 2logn-Ramsey. In fact,
since 1n quasipolynomial time one can check whether a graph is 2logn-Ramsey, the
algorithm can be modified to return one graph that is 2log n-Ramsey.

Theorem 1.2 Under a reasonable hardness assumption H, there exists a constant
¢ and a polynomial-time algorithm that on input 1" returns a list with log®n graphs
with n vertices, and most of them are 2logn-Ramsey.

The proofs of these two results use basic off-the-shelf derandomization techniques.
The proof (one of them) of Theorem [Tl notices that the probabilistic argument that
shows the existence of 2logn-Ramsey graphs only needs a distribution on the set
of n-vertices graphs that is 21log® n-wise independent. There exist such distributions
whose support have the following properties: (a) the size is 20(og?n) and (b) it can
be indexed by strings of size O(log®n). Therefore if we make an exhaustive search
among these indeces, we obtain the result.

Theorem uses a pseudo-random generator g that can fool NP-predicates. The
assumption H, which states that there exists a function in E that, for some ¢ > 0,
requires circuits with SAT gates of size 2", implies the existence of such pseudo-
random generators. Then going back to the previous proof, it can be observed that
the property that an index corresponds to a graph that is not 2logn-Ramsey is an
NP predicate. Since most indeces correspond to graphs that are 2logn-Ramsey,
it follows that for most seeds s, g(s) is also 2logn-Ramsey. Therefore, it suffices
to make an exhaustive search among all possible seeds. Since a seed has length
O(log lindex|) = O(loglog® n), the result follows.

Theorem can be strengthened to produce a list of concise representations of
graphs. A string ¢ is a concise representation of a graph G = (V) E) with V =
{1,...,n} if there is an algorithm A running in time poly(logn) such that for every
u€e ViveV, Alt,u,v) = 1if (u,v) € E and A(t,u,v) = 0 if (u,v) € E. With
basically the same proof as that of Theorem one can show the following result.

Theorem 1.3 Under a reasonable hardness assumption H, there exists a constant
¢ and an algorithm running in time poly(logn) that on input n (written in binary
notation) returns a list ty, ..., tigen, and most elements of the list are concise repre-
sentations of 2logn-Ramsey graphs.

Theorem [ ] is folklore. It appears implicitely in the paper of M. Naor [Nao92].
Theorem may also be known, but we are not aware of any published statement
of it. Fortnow in the Computational Complexity blog [For06] and Santhanam at
the 2011 Bertinoro seminar on Ramsey theory [Sanll] mention a weaker version of
Theorem [[.2], in which the same hardness assumption is used but the size of the list
is polynomial instead of polylogarithmic. This motivated us to write this note.

Section [ contains some additional remarks. First we analyze the implication
of Theorem when plugged in a construction of M. Naor [Nao92] that builds a



k-Ramsey graph from a list of graphs, most of which are k’-Ramsey graphs, which
is exactly what Theorem delivers. We notice that the parameters obtained in
this way are inferior to the result of Barak et al. [BRSWO06]. Secondly, we consider
the problem of explicit lower bounds for the van der Waerden Theorem, a problem
which is related to the explicit construction of Ramsey graphs. We notice that the
hardness assumption which derandomizes BPP implies lower bounds for the van der
Waerden Theorem that match the non-constructive lower bounds obtained via the
Lovasz Local Lemma. The original proof of the Lovasz Local Lemma does not seem
to yield this result. Instead we use a proof of Gasarch and Haeupler [GHI11], based
on the methods of Moser [Mos09] and Moser and Tardos [MT10].

2 The hardness assumption

The hardness assumption needed in theorem [[.2] is that there exists a function f
computable in E (where £ = |J, DTIME[2"]) that, for some € > 0, cannot be
computed by circuits of size 2" that also have SAT gates (in addition to the standard
logical gates). More formally let us denote by C’?AT(n) the size of the smallest circuit
with SAT gates that computes the function f for inputs of length n.

Assumption H: There exists a function f in E such that, for some ¢ > 0, for every
n, C?AT(n) > 27,

Klivans and van Melkebeek [KvMO02], generalizing the work of Nisan and Wigder-
son [NWO94] and Impagliazzo and Wigderson [TW97], have shown that, under as-
sumption H, for every k, there is a constant ¢ and a pseudo-random generator
g : {0,1}¢len 5 £ 1}" computable in time polynomial in n, that fools all n*-
size circuits with SAT gates. Formally, for every circuit C' with SAT gates of size
n*,

[Probye o1} 100 [C(g(s)) = 1] — Probyeqo.3+[C(z) = 1]] < 1/n*.

We note that assumption H is realistic. Miltersen [Mil01] has shown that it is
implied by the following natural assumption, involving uniform complexity classes:
for every € > 0, there is a function f € E that cannot be computed in space 2" for
infinitely many lengths n.

3 Proofs

Proof of Theorem 1.1l

Let us first review the probabilistic argument showing the existence of 2logn-
Ramsey graphs. A graph G with n vertices can be represented by a string of length
(g) If we take at random such a graph and fix a subset of k vertices, the probability



that the set forms a clique or an independent set is 9= ()1, The probability that this
holds for some k-subset is bounded by
(Z) 9= (3)+1 < (%)k 9= (5)+1
— oklog f—(5)+1,

For k = 2logn, the above expression goes to 0. Thus, for n large enough, the
probability that a graph G is 2logn-Ramsey is > 0.99.

The key observation is that this argument remains valid if we take a distribution
that is 2log® n-wise independent. Thus, we can take a polynomial p(X) of degree
2log®n over the field GF[27], where ¢ = log (g) To the polynomial p we associate
the string p = p(ay); .. .p(a(g))l, where aq, . ..  a(y) are the elements of the field and
(p(a)); is the first bit of p(a). When p is random, this yields a distribution over
strings of length (g) that is 21log? n-wise independent. Observe that a polynomial p

is given by a string of length @ = (21log®n + 1) log (5) = O(log®n). It follows that
Prob,c(o,137[D is 2log n-Ramsey]| > 0.99.

In quasipolynomial time we can enumerate the graphs p, and 99% of them are 2 log n-
Ramsey. i

Note. By using an almost k-wise independent distribution (see [NN93|
AGHR92]), one can reduce the size of the list to 2000 n)

Proof of Theorem and of Theorem [1.3.
Let p,p,m be as in the proof of Theorem [Tl Thus:

e p € {0,1}" represents a polynomial,

e p is built from the values taken by p at all the elements of the underlying field,
and represents a graph with n vertices,

e 7= 0O(log’n).

Let us call a string p good if p is a 2logn-Ramsey graph.

Checking that a string p is not good is an NP predicate. Indeed, p is not good iff
(i1, - -y dg10gn) € [n]?198™ [ vertices iy, ..., i210gx in P form a clique or an independent
set]. The 3 is over a string of length polynomial in |p| and the property in the right
parentheses can be checked by computing O(log? n) values of the polynomial p, which
can be done in time polynomial in |p|.

Assumption H implies that there exists a pseudo-random generator g
{0,1}¢ls™ — 10,1}", computable in time polynomial in 7, that fools all NP
predicates, and, in particular, also the one above. Since 99% of the p are good, it
follows that for 90% of the seeds s € {0,1}¢1¢™ g(s) is good, i.e., for 90% of s, g(s)

is 2logn-Ramsey. Note that from a seed s we can compute g(s) and next g(s) in
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time polynomial in n. If we do this for every seed s € {0,1}¢°6™ we obtain a list
with ¢ = O(log® n) graphs of which at least 90% are 2logn-Ramsey graphs.
Theorem [[.3is obtained by observing that {g(s) | s € {0,1}¢!°¢"} is a list that can
be computed in poly(logn) time, and most of its elements are concise representations
of 2logn-Ramsey graphs. i

4 Additional remarks

4.1 Constructing a single Ramsey graph from a list of graphs
of which the majority are Ramsey graphs

M. Naor [Na092] has shown how to construct a Ramsey graph from a list of m graphs
such that all the graphs in the list, except at most am of them, are k-Ramsey. We
analyze what parameters are obtained, if we apply Naor’s construction to the list of
graphs in Theorem [T.2

The main idea of Naor’s construction is to use the product of two graphs G; =
(Vi, E1) and Gy = (Va, E5), which is the graph whose set of vertices is V; x V5, and
edges defined as follows: there is an edge between (uy,us) and (vy,ve) if and only if
(u1,v1) € Ey or (up = v1) and (ug,v9) € Ey. Then, one can observe that if Gy is kq-
Ramsey and G5 is ko-Ramsey, the product graph, G; x G4 is k1ko-Ramsey. Extending
to the product of multiple graphs G, Gs,...,G,, where each G; is k;-Ramsey, we
obtain that the product graph is kiks ... k,,-Ramsey.

If we apply this construction to a list of m graphs Gy, Gs,...,G,,, each having
n vertices and such that Prob;[G; is not k-Ramsey] < «, we obtain that the product
of G1,Gs, ..., G, is a graph G with N = n™ vertices that is t-Ramsey for ¢ =
nemk(=)m  For o < 1/logn, we have ¢ < (2k)™. The list produced in Theorem
has m = log®n, k = 2logn, and one can show that a < 1/logn. The product graph
G has N = 2log°nlogn yertices and is t-Ramsey for ¢ < 2108°nloglogntO(1)  o(log N)!=7
for some positive constant .

Thus, under assumption H, there is a positive constant 5 and a polynomial time
algorithm that on input 1V constructs a graph with N vertices that is 2(°e I

Ramsey. Note that this is inferior to the parameters achieved by the unconditional
construction of Barak, Rao, Shaltiel and Wigderson [BRSWO6].

4.2 Constructive lower bounds for the van der Waerden the-
orem
Van der Waerden Theorem is another classical result in Ramsey theory. It states that

for every ¢ and k there exists a number n such that for any coloring of {1,...,n}
with ¢ colors, there exists k elements in arithmetic progression (k-AP) that have the



same color. Let W (e, k) be the smallest such n. One question is to find a constructive
lower bound for W(c, k). To simplify the discussion, let us focus on W (2, k).

In other words, the problem that we want to solve is the following:

For any k, we want to find a value of n = n(k) as large as possible and a 2-
coloring of {1,...,n} such that no k-AP is monochromatic. Furthermore, we want
the 2-coloring to be computable in time polynomial in n.

Gasarch and Haeupler [GHI11] have studied this problem. They present a proba-
bilistic polynomial time construction for n = 2Z;1 — 1 (i.e., the 2-coloring is obtained
by a probabilistic algorithm running in 2°®*) time) and a (deterministic) polynomial
time construction for n = % (i.e., the 2-coloring is obtained in determinis-
tic 20(/9) time). Their constructions are based on the constructive version of the
Lovasz Local Lemma due to Moser [Mos09] and Moser and Tardos [MT10]. The
probabilistic algorithm of Gasarch and Haeupler is “BPP-like”, in the sense that it
succeeds with probability 2/3 and the correctness of the 2-coloring produced by it
can be checked in polynomial time. It follows that it can be derandomized under
the hardness assumption that derandomizes BPP, using the Impagliazzo-Wigderson
pseudo-random generator [[W97]. It is interesting to remark that the new proof by
Moser and Tardos of the Local Lovasz Lemma is essential here, because the success
probability guaranteed by the classical proof is too small to be used in combination
with the Impagliazzo-Wigderson pseudo-random generator.

We proceed with the details.

We use the following hardness assumption H’ (weaker than assumption H), which

is the one used to derandomize BPP [[W97].

Assumption H’: There exists a function f in E such that, for some ¢ > 0, for
every n, Cr(n) > 2.

Impagliazzo and Wigderson [IW97] have shown that, under assumption H, for
every k, there is a constant ¢ and a pseudo-random generator g : {0, 1}¢%°8™ — {0, 1}
that fools all n*-size circuits and that is computable in time polynomial in n.

Proposition 4.1 Assume assumption H'. For every k, let n = n(k) = 2;1 — 1.

There exists a polynomial-time algorithm that on input 1" 2-colors the set {1,...,n}
such that no k-AP is monochromatic.

Proof. The algorithm of Gasarch and Haeupler [GHI11], on input 1", uses a random
string z of size |z| = n°, for some constant ¢, and, with probability at least 2/3,
succeeds to 2-color the set {1,...,n} such that no k-AP is monochromatic. Let us
call a string z to be good for n if the Gasarch-Haeupler algorithm on input 1" and
randomness z, produces a 2-coloring with no monochromatic k-APs. Note that there
exists a polynomial-time algorithm A that checks if a string z is good or not, because
the Gasarch-Haeupler algorithm runs in polynomial time and the number of k-APs
inside {1,...,n} is bounded by n?/k. Using assumption H' and invoking the result



of Impagliazzo and Wigderson [[W97], we derive that there exists a constant d and a
pseudo-random generator g : {0,1}21°¢" — {0, 1} such that

Probycgg 1341060 [A(g(s)) = good for n] >2/3 —1/10 > 0.

Therefore if we try all possible seeds s of length dlogn, we will find one s such that
g(s) induces the Gasarch-Haeupler algorithm to 2-color the set {1,...,n} such that

no k-AP is monochromatic. |
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