Abstract
The segmentation of foreground objects in camera images is a fundamental step in many computer vision applications. For visual effect creation, the foreground segmentation is required for the integration of virtual objects between scene elements. On the other hand, camera and scene estimation is needed to integrate the objects perspectively correct into the video.
In this paper, discontinued feature tracks are used to detect occlusions. If these features reappear after their occlusion, they are connected to the correct previously discontinued trajectory during sequential camera and scene estimation. The combination of optical flow for features in consecutive frames and SIFT matching for the wide baseline feature connection provides accurate and stable feature tracking. The knowledge of occluded parts of a connected feature track is used to feed an efficient segmentation algorithm which crops the foreground image regions automatically. The presented graph cut based segmentation uses a graph contraction technique to minimize the computational expense.
The presented application in the integration of virtual objects into video. For this application, the accurate estimation of camera and scene is crucial. The segmentation is used for the automatic occlusion of the integrated objects with foreground scene content. Demonstrations show very realistic results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pollefeys, M., Gool, L.V.V., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.: Visual modeling with a hand-held camera. International Journal of Computer Vision (IJCV) 59(3), 207–232 (2004)
van den Hengel, A., Dick, A., Thormählen, T., Ward, B., Torr, P.H.S.: Videotrace: rapid interactive scene modelling from video. In: SIGGRAPH, vol. 86, ACM, New York (2007)
Hasler, N., Rosenhahn, B., Thormählen, T., Wand, M., Seidel, H.P.: Markerless motion capture with unsynchronized moving cameras. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2009)
Hillman, P., Lewis, J., Sylwan, S., Winquist, E.: Issues in adapting research algorithms to stereoscopic visual effects. In: IEEE International Conference on Image Processing (ICIP), pp. 17–20 (2010)
Cornelis, K., Verbiest, F., Van Gool, L.: Drift detection and removal for sequential structure from motion algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 26(10), 1249–1259 (2004)
Engels, C., Fraundorfer, F., Nistér, D.: Integration of tracked and recognized features for locally and globally robust structure from motion. In: VISAPP (Workshop on Robot Perception), pp. 13–22 (2008)
Zhang, G., Dong, Z., Jia, J., Wong, T.-T., Bao, H.: Efficient Non-consecutive Feature Tracking for Structure-from-Motion. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 422–435. Springer, Heidelberg (2010)
Cordes, K., Müller, O., Rosenhahn, B., Ostermann, J.: Feature Trajectory Retrieval with Application to Accurate Structure and Motion Recovery. In: Bebis, G. (ed.) ISVC 2011, Part I. LNCS, vol. 6938, pp. 156–167. Springer, Heidelberg (2011)
Apostoloff, N.E., Fitzgibbon, A.W.: Automatic video segmentation using spatiotemporal t-junctions. In: British Machine Vision Conference, BMVC (2006)
Apostoloff, N.E., Fitzgibbon, A.W.: Learning spatiotemporal t-junctions for occlusion detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 553–559 (2005)
Guan, L., Franco, J.S., Pollefeys, M.: 3d occlusion inference from silhouette cues. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2007)
Brox, T., Malik, J.: Object Segmentation by Long Term Analysis of Point Trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010)
Brox, T., Malik, J.: Large displacement optical flow: Descriptor matching in variational motion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 33(3), 500–513 (2011)
Sheikh, Y., Javed, O., Kanade, T.: Background subtraction for freely moving cameras. In: IEEE International Conference on Computer Vision and Pattern Recognition (ICCV), pp. 1219–1225 (2009)
Zhang, G., Jia, J., Hua, W., Bao, H.: Robust bilayer segmentation and motion/depth estimation with a handheld camera. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 33(3), 603–617 (2011)
Liu, C., Yuen, J., Torralba, A.: Sift flow: Dense correspondence across scenes and its applications. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 33(5), 978–994 (2011)
Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images. In: IEEE International Conference on Computer Vision (ICCV), vol. 1, pp. 105–112 (2001)
Scheuermann, B., Rosenhahn, B.: SlimCuts: GraphCuts for High Resolution Images Using Graph Reduction. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R. (eds.) EMMCVPR 2011. LNCS, vol. 6819, pp. 219–232. Springer, Heidelberg (2011)
Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 674–679 (1981)
Thormählen, T., Hasler, N., Wand, M., Seidel, H.P.: Registration of sub-sequence and multi-camera reconstructions for camera motion estimation. Journal of Virtual Reality and Broadcasting 7(2) (2010)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision (IJCV) 60(2), 91–110 (2004)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: British Machine Vision Conference (BMVC), vol. 1, pp. 384–393 (2002)
Dickscheid, T., Schindler, F., Förstner, W.: Coding images with local features. International Journal of Computer Vision (IJCV) 94(2), 1–21 (2010)
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle Adjustment – A Modern Synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000)
Hartley, R.I., Zisserman, A.: Multiple View Geometry, 2nd edn. Cambridge University Press (2003)
Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. ACM SIGGRAPH Papers 23(3), 309–314 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cordes, K., Scheuermann, B., Rosenhahn, B., Ostermann, J. (2013). Foreground Segmentation from Occlusions Using Structure and Motion Recovery. In: Csurka, G., Kraus, M., Laramee, R.S., Richard, P., Braz, J. (eds) Computer Vision, Imaging and Computer Graphics. Theory and Application. Communications in Computer and Information Science, vol 359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38241-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-38241-3_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38240-6
Online ISBN: 978-3-642-38241-3
eBook Packages: Computer ScienceComputer Science (R0)