Skip to main content

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 359))

Abstract

We propose a principled approach to supervised learning of facial landmarks detector based on the Deformable Part Models (DPM). We treat the task of landmarks detection as an instance of the structured output classification. To learn the parameters of the detector we use the Structured Output Support Vector Machines algorithm. The objective function of the learning algorithm is directly related to the performance of the detector and controlled by the user-defined loss function, in contrast to the previous works. Our proposed detector is real-time on a standard computer, simple to implement and easily modifiable for detection of various set of landmarks. We evaluate the performance of our detector on a challenging “Labeled Faces in the Wild” (LFW) database. The empirical results show that our detector consistently outperforms two public domain implementations based on the Active Appearance Models and the DPM. We are releasing open-source code implementing our proposed detector along with the manual annotation of seven facial landmarks for nearly all images in the LFW database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beumer, G., Veldhuis, R.: On the accuracy of EERs in face recognition and the importance of reliable registration. In: 5th IEEE Benelux Signal Processing Symposium (SPS 2005), pp. 85–88. IEEE Benelux Signal Processing (2005)

    Google Scholar 

  2. Cristinacce, D., Cootes, T., Scott, I.: A multi-stage approach to facial feature detection. In: 15th British Machine Vision Conference (BMVC 2004), pp. 277–286 (2004)

    Google Scholar 

  3. Riopka, T., Boult, T.: The eyes have it. In: Proceedings of ACM SIGMM Multimedia Biometrics Methods and Applications Workshop, pp. 9–16 (2003)

    Google Scholar 

  4. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Analysis and Machine Intelligence 23, 681–685 (2001)

    Article  Google Scholar 

  5. Viola, P., Jones, M.: Robust real-time face detection. International Journal of Computer Vision 57, 137–154 (2004)

    Article  Google Scholar 

  6. Beumer, G., Tao, Q., Bazen, A., Veldhuis, R.: A landmark paper in face recognition. In: 7th International Conference on Automatic Face and Gesture Recognition (FGR 2006). IEEE Computer Society Press (2006)

    Google Scholar 

  7. Cristinacce, D., Cootes, T.: Facial feature detection using AdaBoost with shape constraints. In: 14th Proceedings British Machine Vision Conference (BMVC 2003), pp. 231–240 (2003)

    Google Scholar 

  8. Erukhimov, V., Lee, K.: A bottom-up framework for robust facial feature detection. In: 8th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2008), pp. 1–6 (2008)

    Google Scholar 

  9. Wu, J., Trivedi, M.: Robust facial landmark detection for intelligent vehicle system. In: IEEE International Workshop on Analysis and Modeling of Faces and Gestures (2005)

    Google Scholar 

  10. Crandall, D., Felzenszwalb, P., Huttenlocher, D.: Spatial priors for part-based recognition using statistical models. In: CVPR, pp. 10–17 (2005)

    Google Scholar 

  11. Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition. Internatinal Journal of Computer Vision 61, 55–79 (2005)

    Article  Google Scholar 

  12. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. IEEE Transactions on Pattern Analysis and Machine Intelligence 99 (2009)

    Google Scholar 

  13. Fischler, M.A., Elschlager, R.A.: The representation and matching of pictorial structures. IEEE Transactions on Computers C-22, 67–92 (1973)

    Article  Google Scholar 

  14. Everingham, M., Sivic, J., Zisserman, A.: “Hello! My name is.. Buffy” – automatic naming of characters in TV video. In: Proceedings of the British Machine Vision Conference (2006)

    Google Scholar 

  15. Everingham, M., Sivic, J., Zisserman, A.: Taking the bite out of automatic naming of characters in TV video. Image and Vision Computing 27 (2009)

    Google Scholar 

  16. Sivic, J., Everingham, M., Zisserman, A.: “Who are you?” – learning person specific classifiers from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  17. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y., Singer, Y.: Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research 6, 1453–1484 (2005)

    MATH  Google Scholar 

  18. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst (2007)

    Google Scholar 

  19. Teo, C.H., Vishwanthan, S., Smola, A.J., Le, Q.V.: Bundle methods for regularized risk minimization. J. Mach. Learn. Res. 11, 311–365 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Bordes, A., Bottou, L., Gallinari, P.: SGD-QN: Careful quasi-newton stochastic gradient descent. Journal of Machine Learning Research 10, 1737–1754 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recognition 42, 425–436 (2009)

    Article  MATH  Google Scholar 

  22. Franc, V., Sonnenburg, S.: LIBOCAS — library implementing OCAS solver for training linear svm classifiers from large-scale data (2010), http://cmp.felk.cvut.cz/~xfrancv/ocas/html/index.html

  23. Kroon, D.J.: Active shape model (ASM) and active appearance model (AAM). MATLAB Central (2010), http://www.mathworks.com/matlabcentral/fileexchange/26706-active-shape-model-asm-and-active-appearance-model-aam

  24. Nordstrøm, M.M., Larsen, M., Sierakowski, J., Stegmann, M.B.: The IMM face database - an annotated dataset of 240 face images. Technical report, Informatics and Mathematical Modelling, Technical University of Denmark, DTU (2004)

    Google Scholar 

  25. Everingham, M., Sivic, J., Zisserman, A.: Willow project, automatic naming of characters in tv video. MATLAB implementation (2008), http://www.robots.ox.ac.uk/~vgg/research/nface/index.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Uřičář, M., Franc, V., Hlaváč, V. (2013). Facial Landmarks Detector Learned by the Structured Output SVM. In: Csurka, G., Kraus, M., Laramee, R.S., Richard, P., Braz, J. (eds) Computer Vision, Imaging and Computer Graphics. Theory and Application. Communications in Computer and Information Science, vol 359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38241-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38241-3_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38240-6

  • Online ISBN: 978-3-642-38241-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics