Skip to main content

Object Signature Acquisition through Compressive Scanning

  • Conference paper
Optical Supercomputing (OSC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7715))

Included in the following conference series:

Abstract

In this paper we explore the utility of compressive sensing for object signature generation in the optical domain. We use laser scanning in the data acquisition stage to obtain a small (sub-Nyquist) number of points of an object’s boundary. This can be used to construct the signature, thereby enabling object identification, reconstruction, and, image data compression. We refer to this framework as compressive scanning of objects’ signatures. The main contributions of the paper are the following: 1) we use this framework to replace parts of the digital processing with optical processing, 2) the use of compressive scanning reduces laser data obtained and maintains high reconstruction accuracy, and 3) we show that using compressive sensing can lead to a reduction in the amount of stored data without significantly affecting the utility of this data for image recognition and image compression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frueh, C., Zakhor, A.: Constructing 3D city models by merging ground-based and airborne views. In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. II-562–II-569 (June 2003)

    Google Scholar 

  2. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall, Inc., Upper Saddle River (2006)

    Google Scholar 

  3. Tamir, D.E., Shaked, N.T., Geerts, W.J., Dolev, S.: Compressive sensing of object-signature. In: Dolev, S., Oltean, M. (eds.) OSC 2010. LNCS, vol. 6748, pp. 63–77. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Ye, J.C.: Compressed sensing shape estimation of star-shaped objects in fourier imaging. IEEE Signal Processing Letters 14(10), 750–753 (2007)

    Article  Google Scholar 

  5. Rivenson, Y., Stern, A., Javidi, B.: Compressive fresnel holography. Display Technology. Journal of Display Technology 6(10), 506–509 (2010)

    Article  Google Scholar 

  6. Pavlidis, T.: Algorithms for graphics and image processing. Digital system design series. Computer Science Press (1982)

    Google Scholar 

  7. Baggs, R., Tamir, D.E.: Image registration using dynamic space warping. In: Artificial Intelligence and Pattern Recognition 2008, pp. 128–135 (2008)

    Google Scholar 

  8. Keogh, E., Wei, L., Xi, X., Hee Lee, S., Vlachos, M.: LB Keogh supports exact indexing of shapes under rotation invariance with arbitrary representations and distance measures. In: VLDB, pp. 882–893 (2006)

    Google Scholar 

  9. Arkin, E.M., Chiang, Y.J., Held, M., Mitchell, J.S.B., Sacristan, V., Skiena, S.S., Yang, T.C.: On minimum-area hulls (1998)

    Google Scholar 

  10. Hug, C.: Extracting artificial surface objects from airborne laser scanner data. In: Automatic Extraction of Man-Made Objects from Aerial and Space Images II, pp. 203–212 (1997)

    Google Scholar 

  11. Kirchhoff, S.: Laser diode collimator flatbeam (2011), http://www.sukhamburg.com/onTEAM/pdf/cam_cat_44-45_en.pdf

  12. Donoho, D.: Compressed sensing. IEEE Transactions on Information Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  13. Candes, E., Tao, T.: Near-optimal signal recovery from random projections: Universal encoding strategies. IEEE Transactions on Information Theory 52(12), 5406–5425 (2006)

    Article  MathSciNet  Google Scholar 

  14. Porat, B.: A course in digital signal processing. John Wiley (1997)

    Google Scholar 

  15. Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI. IEEE Signal Processing Magazine (2007)

    Google Scholar 

  16. Elad, M.: Optimized projections for compressed sensing. IEEE Transactions on Signal Processing 55(12), 5695–5702 (2007)

    Article  MathSciNet  Google Scholar 

  17. Candes, E., Wakin, M.: An introduction to compressive sampling. IEEE Signal Processing Magazine 25(2), 21–30 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tamir, J.I., Tamir, D.E., Dolev, S. (2013). Object Signature Acquisition through Compressive Scanning. In: Dolev, S., Oltean, M. (eds) Optical Supercomputing. OSC 2012. Lecture Notes in Computer Science, vol 7715. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38250-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38250-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38249-9

  • Online ISBN: 978-3-642-38250-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics