Skip to main content

Cloud Computing for Nanophotonic Simulations

  • Conference paper
Optical Supercomputing (OSC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7715))

Included in the following conference series:

Abstract

Design and analysis of complex nanophotonic and nanoelectronic structures require significant computing resources. Cloud computing infrastructure allows distributed parallel applications to achieve greater scalability and fault tolerance. The problems of effective use of high-performance computing systems for modeling and simulation of subwavelength diffraction gratings are considered. Rigorous Coupled-Wave Analysis (RCWA) is adapted to cloud computing environment. In order to accomplish this, data flow of the RCWA is analyzed and CPU-intensive operations are converted to data-intensive operations. The generated data sets are structured in accordance with the requirements of MapReduce technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Golub, M.A., Kazanskii, N.L., Sisakyan, I.N., Soifer, V.A.: Computational experiment with plane optical elements. Optoelectronics, Instrumentation and Data Processing (1), 78–89 (1988) (in Russian)

    Google Scholar 

  2. Kazanskiy, N.L.: Mathematical simulation of optical systems. SSAU, Samara (2005) (in Russian)

    Google Scholar 

  3. Kazanskiy, N.L., Serafimovich, P.G., Khonina, S.N.: Harnessing the guided-mode resonance to design nanooptical transmission spectral filters. Optical Memory & Neural Networks (Information Optics) 19(4), 318–324 (2010)

    Article  Google Scholar 

  4. Golovashkin, D.L., Kazanskiy, N.L.: Solving Diffractive Optics Problem using Graphics Processing Units. Optical Memory and Neural Networks (Information Optics) 20(2), 85–89 (2011)

    Article  Google Scholar 

  5. Moharam, M.G., Pommet, D.A., Grann, E.B.: Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach. J. Opt. Soc. Am. A 12(5), 1077–1086 (1995)

    Article  Google Scholar 

  6. Gystis, E., Gaylord, T.: Three-dimensional (vector) rigorous coupled wave analysis of anisotropic grating diffraction. J. Opt. Soc. Am. A 7, 1399–1419 (1990)

    Article  Google Scholar 

  7. Lalanne, P., Morris, G.M.: Highly improved convergence of the coupled-wave method for TM polarization. J. Opt. Soc. Am. A 13(4), 779–784 (1996)

    Article  Google Scholar 

  8. Li, L.: Use of Fourier series in the analysis of discontinuous periodic structures. J. Opt. Soc. Am. A 13(9), 1870–1876 (1996)

    Article  Google Scholar 

  9. Bezus, E.A., Doskolovich, L.L., Kazanskiy, N.L.: Evanescent-wave interferometric nanoscale photolithography using guided-mode resonant gratings. Microelectronic Engineering 88(2), 170–174 (2011)

    Article  Google Scholar 

  10. Bezus, E.A., Doskolovich, L.L., Kazanskiy, N.L.: Scattering suppression in plasmonic optics using a simple two-layer dielectric structure. Applied Physics Letters 98(22), 221108 (3 p.) (2011)

    Google Scholar 

  11. Armbrust, M., et al.: A view of cloud computing. Communications of the ACM 53(4), 50–58 (2010)

    Article  Google Scholar 

  12. Volotovskiy, S.G., Kazanskiy, N.L., Seraphimovich, P.G., Kharitonov, S.I.: Distributed software for parallel calculation of diffractive optical elements on web-server and cluster. In: Proc. IASTED, pp. 69–73. ACTA Press (2002)

    Google Scholar 

  13. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI-The Complete Reference. The MPI Core, vol. 1. MIT Press, Cambridge (1998)

    Google Scholar 

  14. Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Communications of the ACM 53(1), 72–77 (2010)

    Article  Google Scholar 

  15. Hadoop.apache.org/ (Tested June 15, 2011)

  16. Venner, J.: Pro Hadoop. Springer (2009)

    Google Scholar 

  17. Voevodin, V.V.: Mapping computational problems in computer architecture. Computational Methods and Programming: New Information Technologies 1(2), 37–44 (2000) (in Russian)

    MathSciNet  Google Scholar 

  18. Popov, S.B.: Modeling the task information structure in parallel image processing. Computer Optics 34(2), 231–242 (2010) (in Russian)

    Google Scholar 

  19. Soifer, V.A. (ed.): Computer Image Processing, Part I: Basic concepts and theory, 283 p. VDM Verlag Dr. Muller e.K. (2009)

    Google Scholar 

  20. Born, M., Wolf, E.: Principles of Optics. Pergamon, Oxford (1980)

    Google Scholar 

  21. Soifer, V.A.: Nanophotonics and diffractive optics. Computer Optics 32(2), 110–118 (2008) (in Russian)

    Google Scholar 

  22. Soifer, V.A., Kotlyar, V.V., Doskolovich, L.L.: Diffractive optical elements in nanophotonic devices. Computer Optics 33(4), 352–368 (2009) (in Russian)

    Google Scholar 

  23. Kazanskiy, N.L., Serafimovich, P.G., Popov, S.B., Khonina, S.N.: Using guided-mode resonance to design nano-optical spectral transmission filters. Computer Optics 34(2), 162–168 (2010) (in Russian)

    Google Scholar 

  24. Belotelov, V.I., Doskolovich, L.L., Zvezdin, A.K.: Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems. Physical Review Letters 98(7), 5 p. (2007)

    Article  Google Scholar 

  25. Bykov, D.A., Doskolovich, L.L., Soifer, V.A., Kazanskiy, N.L.: Extraordinary Magneto-Optical Effect of a Change in the Phase of Diffraction Orders in Dielectric Diffraction Gratings. Journal of Experimental and Theoretical Physics 111(6), 967–974 (2010) (in Russian)

    Article  Google Scholar 

  26. Bezus, E.A., Doskolovich, L.L., Kazanskiy, N.L., Soifer, V.A., Kharitonov, S.I., Pizzi, M., Perlo, P.: The design of the diffractive optical elements to focus surface plasmons. Computer Optics 33(2), 185–192 (2009) (in Russian)

    Google Scholar 

  27. Bezus, E.A., Doskolovich, L.L., Kazanskiy, N.L., Soifer, V.A., Kharitonov, S.I.: Design of diffractive lenses for focusing surface plasmons. Journal of Optics 12(1), 015001 (7 p.) (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kazanskiy, N.L., Serafimovich, P.G. (2013). Cloud Computing for Nanophotonic Simulations. In: Dolev, S., Oltean, M. (eds) Optical Supercomputing. OSC 2012. Lecture Notes in Computer Science, vol 7715. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38250-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38250-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38249-9

  • Online ISBN: 978-3-642-38250-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics