Skip to main content

Simulation of Prokaryotic Genome Evolution Subjected to Mutational Pressures Associated with DNA Replication

  • Conference paper
Biomedical Engineering Systems and Technologies (BIOSTEC 2012)

Abstract

Each of two differently replicated DNA strands (leading and lagging) is subjected to the distinct mutational pressure associated with its synthesis. To simulate the influence of these pressures on the gene and genome evolution we worked out a computer model in which protein coding sequences were mutated according to the direct pressure (of the strand on which they were located), the reverse pressure (of the opposite strand), and the changing pressure (when the latter pressures were applied alternately). Simulated genomes were eliminated by the occurrence of stop codons in the gene sequences and the loss of their coding properties. The selection against stop codons appeared more deleterious than for coding signal. The leading strand pressure eliminated more genes because of the coding signal loss whereas the lagging strand pressure generated more stop codons. Generally, the reverse and changing pressures destroyed the coding signal weaker than the direct pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frank, A., Lobry, J.: Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. Gene 238, 65–77 (1999)

    Article  Google Scholar 

  2. Kowalczuk, M., Mackiewicz, P., Mackiewicz, D., Nowicka, A., Dudkiewicz, M., Dudek, M.R., Cebrat, S.: DNA asymmetry and the replicational mutational pressure. J. Appl. Genet. 42, 553–557 (2001)

    Google Scholar 

  3. Kowalczuk, M., Mackiewicz, P., Mackiewicz, D., Nowicka, A., Dudkiewicz, M., Dudek, M.R., Cebrat, S.: High correlation between the turnover of nucleotides under mutational pressure and the DNA composition. BMC Evol. Biol. 1, 1–13 (2001)

    Article  Google Scholar 

  4. Rocha, E., Danchin, A.: Ongoing evolution of strand composition in bacterial genomes. Mol. Biol. Evol. 18, 1789–1799 (2001)

    Article  Google Scholar 

  5. Rocha, E., Touchon, M., Feil, E.: Similar compositional biases are caused by very different mutational effects. Genome Res. 16, 1537–1547 (2006)

    Article  Google Scholar 

  6. Lobry, J.: Asymmetric substitution patterns in the two DNA strands of bacteria. Mol. Biol. Evol. 13, 660–665 (1996)

    Article  Google Scholar 

  7. Freeman, J., Plasterer, T., Smith, T., Mohr, S.: Patterns of genome organization in bacteria. Science 279, 1827 (1998)

    Article  Google Scholar 

  8. Grigoriev, A.: Analysing genomes with cumulative skew diagrams. Nucleic Acids Res. 26, 2286–2290 (1998)

    Article  Google Scholar 

  9. McLean, M., Wolfe, K., Devine, K.: Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes. J. Mol. Evol. 47, 691–696 (1998)

    Article  Google Scholar 

  10. Mrazek, J., Karlin, S.: Strand compositional asymmetry in bacterial and large viral genomes. Proc. Natl. Acad. Sci. 95, 3720–3725 (1998)

    Article  Google Scholar 

  11. Mackiewicz, P., Gierlik, A., Kowalczuk, M., Dudek, M.R., Cebrat, S.: Asymmetry of nucleotide composition of prokaryotic chromosomes. J. Appl. Genet. 40, 1–14 (1999)

    Google Scholar 

  12. Tillier, E., Collins, R.: The contributions of replication orientation, gene direction, and signal sequences to base composition asymmetries in bacterial genomes. J. Mol. Evol. 51, 459–463 (2000)

    Google Scholar 

  13. Lobry, J., Sueoka, N.: Asymmetric directional mutation pressures in bacteria. Genome Biol. 3, 58 (2002)

    Article  Google Scholar 

  14. McInerney, J.: Replicational and transcriptional selection on codon usage in Borrelia burgdorferi. Proc. Natl. Acad. Sci. 95, 10698–10703 (1998)

    Article  Google Scholar 

  15. Lafay, B., Lloyd, A., McLean, M., Devine, K., Sharp, P., Wolfe, K.: Proteome composition and codon usage in spirochaetes: species-specific and DNA strand-specific mutational biases. Nucleic Acids Res. 27, 1642–1649 (1999)

    Article  Google Scholar 

  16. Mackiewicz, P., Gierlik, A., Kowalczuk, M., Dudek, M.R., Cebrat, S.: How does replication-associated mutational pressure influence amino acid composition of proteins? Genome Res. 9, 409–416 (1999)

    Google Scholar 

  17. Rocha, E., Danchin, A., Viari, A.: Universal replication biases in bacteria. Mol. Microbiol. 32, 11–16 (1999)

    Article  Google Scholar 

  18. Tillier, E., Collins, R.: Replication orientation affects the rate and direction of bacterial gene evolution. J. Mol. Evol. 51, 459–463 (2000)

    Google Scholar 

  19. Szczepanik, D., Mackiewicz, P., Kowalczuk, M., Gierlik, A., Nowicka, A., Dudek, M.R., Cebrat, S.: Evolution rates of genes on leading and lagging DNA strands. J. Mol. Evol. 52, 426–433 (2001)

    Google Scholar 

  20. Mackiewicz, P., Mackiewicz, D., Kowalczuk, M., Dudkiewicz, M., Dudek, M.R., Cebrat, S.: High divergence rate of sequences located on different DNA strands in closely related bacterial genomes. J. Appl. Genet. 44, 561–584 (2003)

    Google Scholar 

  21. Mackiewicz, P., Dudkiewicz, M., Kowalczuk, M., Mackiewicz, D., Banaszak, J., Polak, N., Smolarczyk, K., Nowicka, A., Dudek, M.R., Cebrat, S.: Differential Gene Survival under Asymmetric Directional Mutational Pressure. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3039, pp. 687–693. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Dudkiewicz, M., Mackiewicz, P., Kowalczuk, M., Mackiewicz, D., Nowicka, A., Polak, N., Smolarczyk, K., Kriaga, J., Dudek, M.R., Cebrat, S.: Simulation of gene evolution under directional mutational pressure. Physica A 336, 63–73 (2004)

    Article  Google Scholar 

  23. Dudkiewicz, M., Mackiewicz, P., Mackiewicz, D., Kowalczuk, M., Nowicka, A., Polak, N., Smolarczyk, K., Kiraga, J., Dudek, M.R., Cebrat, S.: Higher mutation rate helps to rescue genes from the elimination by selection. Biosystems 80, 192–199 (2005)

    Article  Google Scholar 

  24. Mackiewicz, D., Cebrat, S.: To understand nature computer modelling between genetics and evolution. In: Miekisz, J., Lachowicz, M. (eds.) From Genetics to Mathematics. Series on Advances in Mathematics for Applied Sciences, vol. 79, pp. 1–33. World Scientific (2009)

    Google Scholar 

  25. Mackiewicz, P., Szczepanik, D., Gierlik, A., Kowalczuk, M., Nowicka, A., Dudkiewicz, M., Dudek, M.R., Cebrat, S.: The differential killing of genes by inversions in prokaryotic genomes. J. Mol. Evol. 53, 615–621 (2001)

    Article  Google Scholar 

  26. Mackiewicz, D., Mackiewicz, P., Kowalczuk, M., Dudkiewicz, M., Dudek, M.R., Cebrat, S.: Rearrangements between differently replicating DNA strands in asymmetric bacterial genomes. Acta Microbiologica Polonica 52, 245–261 (2003)

    Google Scholar 

  27. Rocha, E., Danchin, A.: Gene essentiality determines chromosome organisation in bacteria. Nucleic Acids Res. 31, 5202–5211 (2003)

    Article  Google Scholar 

  28. Rocha, E., Danchin, A.: Essentiality, not expressiveness, drives gene strand bias in bacteria. Nature Genetics 34, 377–378 (2003)

    Article  Google Scholar 

  29. Błażej, P., Mackiewicz, P., Cebrat, S.: Using the genetic code wisdom for recognizing protein coding sequences. In: Proceedings of the 2010 International Conference on Bioinformatics & Computational Biology, BIOCOMP 2010, pp. 302–305. CSREA Press, Las Vegas (2010)

    Google Scholar 

  30. Błażej, P., Mackiewicz, P., Cebrat, S.: Algorithm for finding coding signal using homogeneous markov chains independently for three codon positions. In: Proceedings of the 2011 International Conference on Bioinformatics and Computational Biology, ICBCB 2011, pp. 20–24. IEEE, Chengdu (2011)

    Google Scholar 

  31. Mackiewicz, P., Gierlik, A., Kowalczuk, M., Szczepanik, D., Dudek, M.R., Cebrat, S.: Mechanisms generating long-range correlation in nucleotide composition of the Borrelia burgdorferi genome. Physica A 273, 103–115 (1999)

    Article  Google Scholar 

  32. National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov

  33. Wańczyk, M., Błażej, P., Mackiewicz, P.: Comparison of two algorithms based on markov chains applied in recognition of protein coding sequences in prokaryotes. In: Proceedings of the Seventeeth National Conference on Applications of Mathematics in Biology and Medicine, pp. 118–123. QPrint, Warsaw (2011)

    Google Scholar 

  34. Cebrat, S., Dudek, M.R., Mackiewicz, P., Kowalczuk, M., Fita, M.: Asymmetry of coding versus non-coding strand in coding sequences of different genomes. Microbial and Comparative Genomics 2, 259–268 (1997)

    Article  Google Scholar 

  35. Cebrat, S., Dudek, M.R., Mackiewicz, P.: Sequence asymmetry as a parameter indicating coding sequence in Saccharomyces cerevisiae genome. Theory in Biosciences 117, 78–89 (1998)

    Google Scholar 

  36. Khrustalev, V., Barkovsky, E.: The probability of nonsense mutation caused by replication-associated mutational pressure is much higher for bacterial genes from lagging than from leading strands. Genomics 96, 173–180 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Błażej, P., Mackiewicz, P., Cebrat, S. (2013). Simulation of Prokaryotic Genome Evolution Subjected to Mutational Pressures Associated with DNA Replication. In: Gabriel, J., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2012. Communications in Computer and Information Science, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38256-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38256-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38255-0

  • Online ISBN: 978-3-642-38256-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics