Skip to main content

Multi-source Harvesting Systems for Electric Energy Generation on Smart Hip Prostheses

  • Conference paper
Biomedical Engineering Systems and Technologies (BIOSTEC 2012)

Abstract

The development of smart orthopaedic implants is being considered as an effective solution to ensure their everlasting life span. The availability of electric power to supply active mechanisms of smart prostheses has remained a critical problem. This paper reports the first implementation of a new concept of energy harvesting systems applied to hip prostheses: the multi-source generation of electric energy. The reliability of the power supply mechanisms is strongly increased with the application of this new concept. Three vibration-based harvesters, operating in true parallel to harvest energy during human gait, were implemented on a Metabloc TM hip prosthesis to validate the concept. They were designed to use the angular movements on the flexion-extension, abduction-adduction and inward-outward rotation axes, over the femoral component, to generate electric power. The performance of each generator was tested for different amplitudes and frequencies of operation. Electric power up to 55 μJ/s was harvested. The overall function of smart hip prostheses can remain performing even if two of the generators get damaged. Furthermore, they are safe and autonomous throughout the life span of the implant.

The authors would like to thank the Portuguese Foundation for Science and Technology (FCT) for their financial support under the Grant PTDC/EME-PME/ 105465/2008.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ren, W., Blasier, R., Peng, X., Shi, T., Wooley, P.H., Markel, D.: Effect of oral erythromycin therapy in patients with aseptic loosening of joint prostheses. Bone 44(4), 671–677 (2009)

    Article  Google Scholar 

  2. Esposito, S., Leone, S.: Prosthetic joint infections: microbiology, diagnosis, management and prevention. International Journal of Antimicrobial Agents 32(4), 287–293 (2008)

    Article  Google Scholar 

  3. Dreinhöfer, K.E., Dieppe, P., Günther, K.P., Puhl, W.: EUROHIP - Health Technology Assessment of Hip Arthroplasty in Europe. Springer, New York (2009)

    Google Scholar 

  4. Ramos, A., Completo, A., Relvas, C., Simões, J.: Design process of a novel cemented hip femoral stem concept. Materials and Design 33, 313–321 (2012)

    Article  Google Scholar 

  5. Jun, Y., Choi, K.: Design of patient-specific hip implants based on the 3D geometry of the human femur. Advances in Engineering Software 41(4), 537–547 (2010)

    Article  MATH  Google Scholar 

  6. Simões, J.A., Marques, A.T.: Design of a composite hip femoral prosthesis. Materials and Design 26(5), 391–401 (2005)

    Article  Google Scholar 

  7. Fehring, T.K., Odum, S.M., Troyer, J.L., Iorio, R., Kurtz, S.M., Lau, E.C.: Joint replacement access in 2016: A supply side crisis. The Journal of Arthroplasty 25(8), 1175–1181 (2010)

    Article  Google Scholar 

  8. Ong, K.L., Lau, E., Suggs, J., Kurtz, S.M., Manley, M.T.: Risk of subsequent revision after primary and revision total joint arthroplasty. Clinical Orthopaedics and Related Research 468(11), 3070–3076 (2010)

    Article  Google Scholar 

  9. Kurtz, S.M., Lau, E., Ong, K., Zhao, K., Kelly, M., Bozic, K.J.: Future young patient demand for primary and revision joint replacement. Clinical Orthopaedics and Related Research 467(10), 2606–2612 (2009)

    Article  Google Scholar 

  10. Rydell, N.W.: Forces acting on the femoral head-prosthesis. A study on strain gauge supplied prostheses in living persons. Acta Orthopaedica Scandinavica 37(88), 1–132 (1966)

    Google Scholar 

  11. Damm, P., Graichen, F., Rohlmann, A., Bender, A., Bergmann, G.: Total hip joint prosthesis for in vivo measurement of forces and moments. Medical Engineering & Physics 32(1), 95–100 (2010)

    Article  Google Scholar 

  12. Boyle, C., Kim, I.Y.: Comparison of different hip prosthesis shapes considering micro-level bone remodeling and stress-shielding criteria using three-dimensional design space topology optimization. Journal of Biomechanics 44(9), 1722–1728 (2011)

    Article  Google Scholar 

  13. Nikooyan, A.A., Veeger, H.E., Westerhoff, P., Graichen, F., Bergmann, G., van der Helm, F.C.: Validation of the delft shoulder and elbow model using in-vivo glenohumeral joint contact forces. Journal of Biomechanics 43(15), 3007–3014 (2010)

    Article  Google Scholar 

  14. Rohlmann, A., Gabel, U., Graichen, F., Bender, A., Bergmann, G.: An instrumented implant for vertebral body replacement that measures loads in the anterior spinal column. Medical Engineering & Physics 29(5), 580–585 (2007)

    Article  Google Scholar 

  15. Puers, R., Catrysse, M., Vandevoorde, G., Collier, R., Louridas, E., Burny, F., Donkerwolcke, M., Moulart, F.: A telemetry system for the detection of hip prosthesis loosening by vibration analysis. Sensors and Actuators A: Physical 85(1-3), 42–47 (2000)

    Article  Google Scholar 

  16. Heinlein, B., Graichen, F., Bender, A., Rohlmann, A., Bergmann, G.: Design, calibration and pre-clinical testing of an instrumented tibial tray. Journal of Biomechanics 40, S4–S10 (2007)

    Google Scholar 

  17. Almouahed, S., Gouriou, M., Hamitouche, C., Stindel, E., Roux, C.: Design and evaluation of instrumented smart knee implant. IEEE Transactions on Biomedical Engineering 58(4), 971–982 (2011)

    Article  Google Scholar 

  18. Graichen, F., Bergmann, G., Rohlmann, A.: Hip endoprosthesis for in vivo measurement of joint force and temperature. Journal of Biomechanics 32(10), 1113–1117 (1999)

    Article  Google Scholar 

  19. Marschner, U., Grätz, H., Jettkant, B., Ruwisch, D., Woldt, G., Fischer, W.J., Clasbrummel, B.: Integration of a wireless lock-in measurement of hip prosthesis vibrations for loosening detection. Sensors and Actuators A: Physical 156(1), 145–154 (2009)

    Article  Google Scholar 

  20. Rowlands, A., Duck, F.A., Cunningham, J.L.: Bone vibration measurement using ultrasound: Application to detection of hip prosthesis loosening. Medical Engineering & Physics 30(3), 278–284 (2008)

    Article  Google Scholar 

  21. Bergmann, G., Graichen, F., Rohlmann, A., Westerhoff, P., Heinlein, B., Bender, A., Ehrig, R.: Design and calibration of load sensing orthopaedic implants. Journal of Biomechanical Engineering 130(2), 021009 (2008)

    Google Scholar 

  22. Graichen, F., Arnold, R., Rohlmann, A., Bergmann, G.: Implantable 9-channel telemetry system for in vivo load measurements with orthopedic implants. IEEE Transactions on Biomedical Engineering 54(2), 253–261 (2007)

    Article  Google Scholar 

  23. Valdastri, P., Rossi, S., Menciassi, A., Lionetti, V., Bernini, F., Recchia, F.A., Dario, P.: An implantable ZigBee ready telemetric platform for in vivo monitoring of physiological parameters. Sensors and Actuators A: Physical 142(1), 369–378 (2008)

    Article  Google Scholar 

  24. Morais, R., Frias, C.M., Silva, N.M., Azevedo, J.L.F., Serôdio, C.A., Silva, P.M., Ferreira, J.A.F., Simões, J.A.O., Reis, M.C.: An activation circuit for battery-powered biomedical implantable systems. Sensors and Actuators A: Physical 156(1), 229–236 (2009)

    Article  Google Scholar 

  25. Kim, P.R., Beaulé, P.E., Laflamme, G.Y., Dunbar, M.: Causes of early failure in a multicenter clinical trial of hip resurfacing. The Journal of Arthroplasty 23(6), 44–49 (2008)

    Article  Google Scholar 

  26. Alpuim, P., Filonovich, S.A., Costa, C.M., Rocha, P.F., Vasilevskiy, M.I., Lanceros-Mendez, S., Frias, C., Marques, A.T., Soares, R., Costa, C.: Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon. Journal of Non-Crystalline Solids 354(19-25), 2585–2589 (2008)

    Article  Google Scholar 

  27. Morais, R., Silva, N.M., Santos, P.M., Frias, C.M., Ferreira, J.A.F., Ramos, A.M., Simões, J.A.O., Baptista, J.M.R., Reis, M.C.: Double permanent magnet vibration power generator for smart hip prosthesis. Sensors and Actuators A: Physical 172(1), 259–268 (2011)

    Article  Google Scholar 

  28. Wei, X., Liu, J.: Power sources and electrical recharging strategies for implantable medical devices. Frontiers of Energy and Power Engineering in China 2(1), 1–13 (2008)

    Article  Google Scholar 

  29. Kaźmierski, T.J., Beeby, S.: Energy Harvesting Systems - Principles, Modeling and Applications. Springer, New York (2011)

    Book  Google Scholar 

  30. Kerzenmacher, S., Ducrée, J., Zengerle, R., von Stetten, F.: Energy harvesting by implantable abiotically catalyzed glucose fuel cells. Journal of Power Sources 182(1), 1–17 (2008)

    Article  Google Scholar 

  31. Carmo, J.P., Ribeiro, J.F., Silva, M.F., Goncalves, L.M., Correia, J.H.: Thermoelectric generator and solid-state battery for stand-alone microsystems. Journal of Micromechanics and Microengineering 20(8), 1–8 (2010)

    Article  Google Scholar 

  32. Lu, M., Guang Zhang, G., Fu, K., Hao Yu, G., Su, D., Feng Hu, J.: Gallium nitride schottky betavoltaic nuclear batteries. Energy Conversion and Management 52(4), 1955–1958 (2011)

    Article  Google Scholar 

  33. Burny, F., Donkerwolcke, M., Moulart, F., Bourgois, R., Puers, R., Schuylenbergh, K.V., Barbosa, M., Paiva, O., Rodes, F., Bégueret, J.B., Lawes, P.: Concept, design and fabrication of smart orthopedic implants. Medical Engineering & Physics 22(7), 469–479 (2000)

    Article  Google Scholar 

  34. Sakamoto, J.H., van de Ven, A.L., Godin, B., Blanco, E., Serda, R.E., Grattoni, A., Ziemys, A., Bouamrani, A., Hu, T., Ranganathan, S.I., Rosa, E.D., Martinez, J.O., Smid, C.A., Buchanan, R.M., Lee, S.Y., Srinivasan, S., Landry, M., Meyn, A., Tasciotti, E., Liu, X., Decuzzi, P., Ferrari, M.: Enabling individualized therapy through nanotechnology. Pharmacological Research 62(2), 57–89 (2010)

    Article  Google Scholar 

  35. Frias, C., Reis, J., e Silva, F.C., Potes, J., Simões, J., Marques, A.T.: Polymeric piezoelectric actuator substrate for osteoblast mechanical stimulation. Journal of Biomechanics 43(6), 1061–1066 (2010)

    Article  Google Scholar 

  36. Tanaka, S.M., Li, J., Duncan, R.L., Yokota, H., Burr, D.B., Turner, C.H.: Effects of broad frequency vibration on cultured osteoblasts. Journal of Biomechanics 36(1), 73–80 (2003)

    Article  Google Scholar 

  37. Bacabac, R.G., Smit, T.H., Loon, J.J.W.A.V., Doulabi, B.Z., Helder, M., Klein-Nulend, J.: Bone cell responses to high-frequency vibration stress: does the nucleus oscillate within the cytoplasm? The FASEB Journal 20(7), 858–864 (2006)

    Article  Google Scholar 

  38. Winau, F., Westphal, O., Winau, R.: Paul Ehrlich - in search of the Magic Bullet. Microbes and Infection 6, 786–789 (2004)

    Article  Google Scholar 

  39. Morais, R., Silva, N., Santos, P., Frias, C., Ferreira, J., Ramos, A., Simões, J., Baptista, J., Reis, M.: Permanent magnet vibration power generator as an embedded mechanism for smart hip prosthesis. Procedia Engineering 5, 766–769 (2010)

    Article  Google Scholar 

  40. Frias, C., Reis, J., e Silva, F.C., Potes, J., Simões, J., Marques, A.T.: Piezoelectric actuator: Searching inspiration in nature for osteoblast stimulation. Composites Science and Technology 70(13), 1920–1925 (2010)

    Article  Google Scholar 

  41. Reis, J.C.: The Bone/Implant Interface: New Approaches to Old Problems. PhD thesis, University of Évora (2010)

    Google Scholar 

  42. Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology 17, R175–R195 (2006)

    Google Scholar 

  43. Priya, S., Inman, D.J.: Energy Harvesting Technologies. Springer, New York (2009)

    Book  Google Scholar 

  44. Kalogirou, S.: Applications of artificial neural-networks for energy systems. Applied Energy 67, 17–35 (2000)

    Article  Google Scholar 

  45. Yuen, S.C., Lee, J.M., Li, W.J., Leong, P.H.: An AA-sized vibration-based microgenerator for wireless sensors. IEEE Pervasive Computing 6(1), 64–72 (2007)

    Article  Google Scholar 

  46. Zhu, D., Tudor, M.J., Beeby, S.P.: Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Measurement Science and Technology 21(2), 1–29 (2010)

    Article  Google Scholar 

  47. Morlock, M., Schneider, E., Bluhm, A., Vollmer, M., Bergmann, G., Müller, V., Honl, M.: Duration and frequency of every day activities in total hip patients. Journal of Biomechanics 34(7), 873–881 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

dos Santos, M.P.S. et al. (2013). Multi-source Harvesting Systems for Electric Energy Generation on Smart Hip Prostheses. In: Gabriel, J., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2012. Communications in Computer and Information Science, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38256-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38256-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38255-0

  • Online ISBN: 978-3-642-38256-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics