Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7893))

Abstract

The discrete scale space representation L of f is continuous in scale t. A computational investigation of L however must rely on a finite number of sampled scales. There are multiple approaches to sampling L differing in accuracy, runtime complexity and memory usage. One apparent approach is given by the definition of L via discrete convolution with a scale space kernel. The scale space kernel is of infinite domain and must be truncated in order to compute an individual scale, thus introducing truncation errors. A periodic boundary condition for f further complicates the computation. In this case, circular convolution with a Laplacian kernel provides for an elegant but still computationally complex solution. Applied in its eigenspace however, the circular convolution operator reduces to a simple and much less complex scaling transformation. This paper details how to efficiently decompose a scale of L and its derivative ∂  t L into a sum of eigenimages of the Laplacian circular convolution operator and provides a simple solution of the discretized diffusion equation, enabling for fast and accurate sampling of L.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koenderink, J.J.: The structure of images. Biological Cybernetics 50, 363–370 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kuijper, A., Florack, L.M.J.: Understanding and modeling the evolution of critical points under Gaussian blurring. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 143–157. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Kuijper, A., Florack, L.: The relevance of non-generic events in scale space models. International Journal of Computer Vision 1(57), 67–84 (2004)

    Article  Google Scholar 

  4. Kanters, F., Lillholm, M., Duits, R., Janssen, B., Platel, B., Florack, L., ter Haar Romeny, B.: On image reconstruction from multiscale top points. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 431–442. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Kanters, F., Florack, L., Duits, R., Platel, B., ter Haar Romeny, B.: Scalespaceviz: a-scale spaces in practice. Pattern Recognition and Image Analysis 17, 106–116 (2007)

    Article  Google Scholar 

  6. Felsberg, M., Duits, R., Florack, L.: The monogenic scale space on a bounded domain and its applications. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 209–224. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Janssen, B., Duits, R., ter Haar Romeny, B.M.: Linear image reconstruction by sobolev norms on the bounded domain. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 55–67. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Kanters, F., Florack, L.: Deep structure, singularities, and computer vision. Technical report, Eindhoven University of Technology (September 2003)

    Google Scholar 

  9. Lindeberg, T.: Scale-Space Theory in Computer Vision. The Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers (1994)

    Google Scholar 

  10. Tschirsich, M., Kuijper, A.: Laplacian eigenimages in discrete scale space. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR&SPR 2012. LNCS, vol. 7626, pp. 162–170. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Kuijper, A.: On detecting all saddle points in 2d images. Pattern Recognition Letters 25(15), 1665–1672 (2004)

    Article  Google Scholar 

  12. Tschirsich, M., Kuijper, A.: A discrete scale space neighborhood for robust deep structure extraction. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR&SPR 2012. LNCS, vol. 7626, pp. 126–134. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Raz, R.: On the complexity of matrix product. In: ACM Symposium on Theory of Computing, pp. 144–151 (2002)

    Google Scholar 

  14. Lizhi, C., Zengrong, J.: An efficient algorithm for cyclic convolution based on fast-polynomial and fast-w transforms. Circuits, Systems, and Signal Processing 20, 77–88 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nowak, R.: 2D DFT (July 2005), http://cnx.org/content/m10987/2.4/

  16. Kenyon, R.: The Laplacian on planar graphs and graphs on surfaces. ArXiv e-prints (March 2012)

    Google Scholar 

  17. Scott, P.J.: An algorithm to extract critical points from lattice height data. International Journal of Machine Tools and Manufacture 41(13-14), 1889–1897 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tschirsich, M., Kuijper, A. (2013). Discrete Deep Structure. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2013. Lecture Notes in Computer Science, vol 7893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38267-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38267-3_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38266-6

  • Online ISBN: 978-3-642-38267-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics