Abstract
This study is concerned with constructing expert regularizers for specific tasks. We discuss the general problem of what is desired from a regularizer, when one knows the type of images to be processed. The aim is to improve the processing quality and to reduce artifacts created by standard, general-purpose, regularizers, such as total-variation or nonlocal functionals.
Fundamental requirements for the theoretic expert regularizer are formulated. A simplistic regularizer is then presented, which approximates in some sense the ideal requirements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Arias, P., Caselles, V., Facciolo, G.: Analysis of a variational framework for exemplar-based image inpainting. Multiscale Model. & Simul. 10(2), 473–514 (2012)
Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Applied Mathematical Sciences, vol. 147. Springer (2002)
Aujol, J.F., Chambolle, A.: Dual norms and image decomposition models. IJCV 63(1), 85–104 (2005)
Bayram, I., Kamasak, M.E.: A Directional Total Variation. In: Proceedings of 20th European Signal Processing Conference, EUSIPCO 2012 (2012)
Berkels, B., Burger, M., Droske, M., Nemitz, O., Rumpf, M.: Cartoon extraction based on anisotropic image classification. In: Vision, Modeling, and Visualization Proceedings, pp. 293–300 (2006)
Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sciences 3(3), 492–526 (2010)
Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)
Brox, T., Kleinschmidt, O., Cremers, D.: Efficient nonlocal means for denoising of textural patterns. IEEE Trans. Image Processing 17(7), 1083–1092 (2008)
Buades, A., Coll, B., Morel, J.-M.: A review of image denoising algorithms, with a new one. SIAM Multiscale Modeling and Simulation 4(2), 490–530 (2005)
Burger, M., Gilboa, G., Osher, S., Xu, J.: Nonlinear inverse scale space methods. Comm. in Math. Sci. 4(1), 179–212 (2006)
Chan, T.F., Esedoglu, S., Park, F.E.: A fourth order dual method for staircase reduction in texture extraction and image restoration problems. In: ICIP, pp. 4137–4140 (2010)
Coupé, P., Manjón, J.V., Fonov, V., Pruessner, J., Robles, M., Louis Collins, D.: Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. Neuroimage 54(2), 940–954 (2011)
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Processing 16(8), 2080–2095 (2007)
Droske, M., Rumpf, M.: A variational approach to non-rigid morphological registration. SIAM Appl. Math. 64(2), 668–687 (2004)
Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Processing 15(12), 3736–3745 (2006)
Gilboa, G., Osher, S.: Nonlocal linear image regularization and supervised segmentation. SIAM Multiscale Modeling and Simulation 6(2), 595–630 (2007)
Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Modeling & Simulation, 1005–1028 (2008)
Hu, Y., Jacob, M.: Higher degree total variation (hdtv) regularization for image recovery. IEEE Transactions on Image Processing 21(5), 2559–2571 (2012)
Hutter, J., Grimm, R., Forman, C., Hornegger, J., Schmitt, P.: Vessel Adapted Regularization for Iterative Reconstruction in MR Angiography. In: Proceedings, 20th Annual Meeting, Int. Soc. Magnetic Resonance in Medicine (ISMRM) (2012)
Kindermann, S., Osher, S., Jones, P.: Deblurring and denoising of images by nonlocal functionals. SIAM Multiscale Modeling & Simul. 4(4), 1091–1115 (2005)
Lou, Y., Zhang, X., Osher, S., Bertozzi, A.: Image recovery via nonlocal operators. Journal of Scientific Computing 42(2), 185–197 (2010)
Meyer, Y.: Oscillating patterns in image processing and in some nonlinear evolution equations. The 15th Dean Jacquelines B. Lewis Memorial Lectures (March 2001)
Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation based image restoration. SIAM Journal on Multiscale Modeling and Simulation 4, 460–489 (2005)
Osher, S., Esedoglu, S.: Decomposition of images by the anisotropic rudin-osher-fatemi model. Comm. Pure Appl. Math 57, 1609–1626 (2003)
Osher, S., Sole, A., Vese, L.: Image decomposition and restoration using total variation minimization and the H− 1 norm. SIAM Multiscale Modeling and Simulation 1(3), 349–370 (2003)
Roth, S., Black, M.J.: Fields of experts: A framework for learning image priors. In: IEEE Computer Society Conference on CVPR 2005, pp. 860–867 (2005)
Rubinstein, R., Zibulevsky, M., Elad, M.: Double sparsity: Learning sparse dictionaries for sparse signal approximation. IEEE Transactions on Image Processing 58(3), 1553–1564 (2010)
Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)
Tschumperlé, D., Brun, L.: Non-local regularization and registration of multi-valued images by pdes and variational methods on higher dimensional spaces. In: Mathematical Image Processing, pp. 181–197 (2011)
Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner-Verlag, Stuttgart (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gilboa, G. (2013). Expert Regularizers for Task Specific Processing. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2013. Lecture Notes in Computer Science, vol 7893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38267-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-38267-3_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38266-6
Online ISBN: 978-3-642-38267-3
eBook Packages: Computer ScienceComputer Science (R0)