Abstract
It was shown recently that the phase of the Fourier Transform of an image could lead to interesting no-reference image quality measures. The Global Phase Coherence, and its recent Gaussian variant called Sharpness Index, rate the sharpness of an image in contrast not only with blur, but also noise, ringing, etc. In this work, we introduce a new variant of these indices, that can be computed with one Fourier Transform only, hence four times quicker than the Sharpness Index. We use this new index S to build an image restoration algorithm that, in a stochastic framework, selects a radial-unimodal deconvolution kernel for which the S-value of the restored image is optimal. Experiments are discussed, and comparison is made with a radial oracle deconvolution filter and the recent blind deconvolution algorithm of Levin et al.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blanchet, G., Moisan, L., Rougé, B.: Measuring the Global Phase Coherence of an Image. In: Proceedings of ICIP 2008, pp. 1176–1179 (2008)
Blanchet, G., Moisan, L.: An Explicit Sharpness Index Related to Global Phase Coherence. In: Proceedings of ICASSP 2012, pp. 1065–1068 (2012)
Calderero, F., Moreno, P.: Evaluation of Sharpness Measures and Proposal of a Stop Criterion for Reverse Diffusion in the Context of Image Deblurring. In: Proceedings of VISAPP 2013 (2013)
Chambolle, A., Pock, T.: A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging. Journal of Mathematical Imaging and Vision 40(1), 161–179 (2011)
Desolneux, A., Moisan, L., Morel, J.-M.: Dequantizing image orientation. IEEE Transactions on Image Processing 11(10), 1129–1140 (2002)
Desolneux, A., Moisan, L., Ronsin, S.: A Compact Representation of Random Phase and Gaussian Textures. In: Proceedings of ICASSP 2012, pp. 1381–1384 (2012)
Frisen, M.: Unimodal Regression. Journal of the Royal Statistical Society. Series D The Statistician 35(4), 479–485 (1986)
Galerne, B., Gousseau, Y., Morel, J.-M.: Random Phase Textures: Theory and Synthesis. IEEE Transactions on Image Processing 20(1), 257–267 (2011)
Hassen, R., Wang, Z., Salama, M.: No-Reference Image Sharpness Assessment Based on Local Phase Coherence Measurement. In: Proc. of ICASSP 2010, pp. 2434–2437 (2010)
Kovesi, P.: Phase Congruency: a Low-level Image Invariant. Psychological Research 64, 136–148 (2000)
Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient Marginal Likelihood Optimization in Blind Deconvolution. In: Proceedings of CVPR 2011 (2011)
Moisan, L.: Periodic Plus Smooth Image Decomposition. Journal of Mathematical Imaging and Vision 39(2), 120–145 (2011)
Morrone, M.C., Burr, D.C.: Feature Detection in Human Vision: a Phase-Dependent Energy Model. Proc. R. Soc. Lond. B235, 221–245 (1988)
Oppenheim, A.V., Lim, J.S.: The Importance of Phase in Signals. Proceedings of the IEEE 69, 529–541 (1981)
Wang, Z., Simoncelli, E.P.: Local Phase Coherence and the Perception of Blur. Adv. Neural Information Processing Systems (NIPS 2003) 16, 786–792 (2004)
Zhu, X., Milanfar, P.: Automatic Parameter Selection for Denoising Algorithms Using a No-Reference Measure of Image Content. IEEE Transactions on Image Processing 19(12), 3116–3132 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Leclaire, A., Moisan, L. (2013). Blind Deblurring Using a Simplified Sharpness Index. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2013. Lecture Notes in Computer Science, vol 7893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38267-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-38267-3_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38266-6
Online ISBN: 978-3-642-38267-3
eBook Packages: Computer ScienceComputer Science (R0)