Skip to main content

Blind Deblurring Using a Simplified Sharpness Index

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7893))

  • 3778 Accesses

Abstract

It was shown recently that the phase of the Fourier Transform of an image could lead to interesting no-reference image quality measures. The Global Phase Coherence, and its recent Gaussian variant called Sharpness Index, rate the sharpness of an image in contrast not only with blur, but also noise, ringing, etc. In this work, we introduce a new variant of these indices, that can be computed with one Fourier Transform only, hence four times quicker than the Sharpness Index. We use this new index S to build an image restoration algorithm that, in a stochastic framework, selects a radial-unimodal deconvolution kernel for which the S-value of the restored image is optimal. Experiments are discussed, and comparison is made with a radial oracle deconvolution filter and the recent blind deconvolution algorithm of Levin et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blanchet, G., Moisan, L., Rougé, B.: Measuring the Global Phase Coherence of an Image. In: Proceedings of ICIP 2008, pp. 1176–1179 (2008)

    Google Scholar 

  2. Blanchet, G., Moisan, L.: An Explicit Sharpness Index Related to Global Phase Coherence. In: Proceedings of ICASSP 2012, pp. 1065–1068 (2012)

    Google Scholar 

  3. Calderero, F., Moreno, P.: Evaluation of Sharpness Measures and Proposal of a Stop Criterion for Reverse Diffusion in the Context of Image Deblurring. In: Proceedings of VISAPP 2013 (2013)

    Google Scholar 

  4. Chambolle, A., Pock, T.: A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging. Journal of Mathematical Imaging and Vision 40(1), 161–179 (2011)

    Article  MathSciNet  Google Scholar 

  5. Desolneux, A., Moisan, L., Morel, J.-M.: Dequantizing image orientation. IEEE Transactions on Image Processing 11(10), 1129–1140 (2002)

    Article  MathSciNet  Google Scholar 

  6. Desolneux, A., Moisan, L., Ronsin, S.: A Compact Representation of Random Phase and Gaussian Textures. In: Proceedings of ICASSP 2012, pp. 1381–1384 (2012)

    Google Scholar 

  7. Frisen, M.: Unimodal Regression. Journal of the Royal Statistical Society. Series D The Statistician 35(4), 479–485 (1986)

    Google Scholar 

  8. Galerne, B., Gousseau, Y., Morel, J.-M.: Random Phase Textures: Theory and Synthesis. IEEE Transactions on Image Processing 20(1), 257–267 (2011)

    Article  MathSciNet  Google Scholar 

  9. Hassen, R., Wang, Z., Salama, M.: No-Reference Image Sharpness Assessment Based on Local Phase Coherence Measurement. In: Proc. of ICASSP 2010, pp. 2434–2437 (2010)

    Google Scholar 

  10. Kovesi, P.: Phase Congruency: a Low-level Image Invariant. Psychological Research 64, 136–148 (2000)

    Article  Google Scholar 

  11. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient Marginal Likelihood Optimization in Blind Deconvolution. In: Proceedings of CVPR 2011 (2011)

    Google Scholar 

  12. Moisan, L.: Periodic Plus Smooth Image Decomposition. Journal of Mathematical Imaging and Vision 39(2), 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  13. Morrone, M.C., Burr, D.C.: Feature Detection in Human Vision: a Phase-Dependent Energy Model. Proc. R. Soc. Lond. B235, 221–245 (1988)

    Google Scholar 

  14. Oppenheim, A.V., Lim, J.S.: The Importance of Phase in Signals. Proceedings of the IEEE 69, 529–541 (1981)

    Article  Google Scholar 

  15. Wang, Z., Simoncelli, E.P.: Local Phase Coherence and the Perception of Blur. Adv. Neural Information Processing Systems (NIPS 2003) 16, 786–792 (2004)

    Google Scholar 

  16. Zhu, X., Milanfar, P.: Automatic Parameter Selection for Denoising Algorithms Using a No-Reference Measure of Image Content. IEEE Transactions on Image Processing 19(12), 3116–3132 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leclaire, A., Moisan, L. (2013). Blind Deblurring Using a Simplified Sharpness Index. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2013. Lecture Notes in Computer Science, vol 7893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38267-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38267-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38266-6

  • Online ISBN: 978-3-642-38267-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics