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Abstract. This paper describes a cascadic image restoration method
which at each level applies a two-way alternating denoising and deblur-
ring procedure. Denoising is carried out with a wavelet transform, which
also provides an estimate of the noise-level. The latter is used to deter-
mine a suitable regularization parameter for the Krylov subspace itera-
tive deblurring method. The cascadic multilevel method proceeds from
coarse to fine image resolution, using suitable restriction and prolonga-
tion operators. The choice of the latter is critical for the performance of
the multilevel method. We introduce a special deblurring prolongation
procedure based on TV regularization. Computed examples demonstrate
the effectiveness of the method proposed for determining image restora-
tions of high quality.

1 Introduction

Image restoration is a classical and important research area in image processing.
Let the function f° represent the available noise- and blur-contaminated two-
dimensional image, and let the function @ represent the associated (unknown)
blur- and noise-free image that we would like to recover. We assume the functions
f? and @ to be related by the degradation model

f3(x) = /Q W w)i(y)dy + (@), z e, (1)

where {2 is a square or rectangle on which the image is defined, 1 represents
additive noise (error) in the data f°, and h is the point-spread function (PSF).
The integral may represent a space-invariant or space-variant blurring operator.
We would like to recover 4 given the observed image f° and the PSF h.

It is well known that the solution of (1) is an ill-posed inverse problem and
therefore computationally challenging. Many algorithms are available for deter-
mining an approximate solution of (1), including recently proposed multilevel
and alternating methods; see, e.g., [1,2,7,9-11,13]. To be able to determine
accurate restorations, the methods apply regularization, i.e., they replace the
original problem by a nearby one that is less sensitive to perturbations.
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The multilevel methods proposed in [9-11] proceed from coarser to finer im-
age resolution levels and are based on regularization by truncated iteration on
each level. Prolongation of a coarse-level approximation of @ to a finer level is
carried out with the aid of nonlinear edge-preserving and noise-reducing opera-
tors. Restrictions are computed by a local weighted least-squares method that
is designed to preserve structures, such as edges, in the image. For many image
restoration problems, the multilevel methods demand fewer matrix-vector prod-
uct evaluations on the finest level than the corresponding one-level truncated
iterative methods and often determine restorations of higher quality. The num-
ber of iterations on each level is based on a computed estimate of the amount of
noise-contamination on each level.

The attractions of alternating iterative image restoration schemes, such as
the ones described in [1,7,13], include that deblurring and denoising can be
carried out independently, which simplifies the design and implementation of
these schemes, and that they often yield restorations of high quality. Huang et
al. in [7] describe a two-way alternating iterative method in which regularization
is achieved by a Total Variation (TV)-norm operator.

This paper proposes a new multilevel alternating method for solving image
restoration problems (1). The method applies an alternating method on each
level of a cascadic multilevel method, going from coarser to finer image resolution.
Denoising is achieved by wavelet transformation, and yields estimates of the
amount of noise on each level. These estimates determine the regularization
parameter for Tikhonov regularization, which is for deblurring. The prolongation
from coarser to finer resolution introduces slight blurring in the image. Therefore,
to further improve the quality of the restored image, we combine prolongation
with TV regularization.

This paper is organized as follows. Sect. 2 describes the new image restora-
tion method, in Sect. 3 we discuss the details of the denoising, deblurring, and
prolongation steps. Sect. 4 presents a few computed examples, and concluding
remarks can be found in Sect. 5.

2 A cascading-alternating image restoration method

Consider a discretization of (1) and let the gray-scale image in the left-hand side
of (1) be represented by an array of n x n pixels. Ordering the pixels column-wise
defines a vector in R”Q, which we also denote by f. The integral operator in (1)
is represented by the matrix H € R"QX’Lz, which typically is large and severely
ill-conditioned. Let
WicWycC---CW,,

be a sequence of nested subspaces of R" with W; of dimension dim(W;) = N(j)
and N(1) < N(2) < ... < N(m) = n%. We refer to the subspaces W; as levels,
with W7 being t2he coarsest and W, = R™ the finest level. The restriction
operator R; : R" — W; is such that

H;=R;HR! ) =R;f°, 1<j<m, (2)
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where the R; are determined by repeated local weighted least-squares approxi-
mation; see [9-12] for more details.

Going from level 1 to m, we apply on each level an alternating procedure for
denoising and deblurring. To simplify the notation, we refer to the representa-
tions of H; and ff on level j also by H and f°, respectively. The meaning of
these and other matrices and vectors is clear from the context. Thus, on level j
the initial iterate is u(?) := % € RNVU) and the alternating method carries out
the iterations, for i =1,2,3,... ,

wt? = 8, (V) = argmin {w — uC VP + 3 M ((w, er))}, (3)
weRN () &
ul? = Sp,(w?) == argmin {[|Hu — f°|* + allu — w?|?}, (4)
uelly

where the regularization parameter o« > 0 is determined by the discrepancy
principle using an estimate of the noise in the image on level j. Thus, a depends
on the level j; see below for details. The function ¢ in (3) is a penalty function,
the A\ denote weights, and {¢;} is an orthonormal wavelet basis. A common
choice of penalty function is ¢(z) = |x|P for some 1 < p < 2. We use this
penalty function with p = 1. Minimization in (4) is on every level carried out
over an /-dimensional Krylov subspace Ky determined by ¢ steps of Golub-Kahan
bidiagonalization applied to H with initial vector f?; see Subsection 3.2 for the
definition of Ky and further details.

The prolongation operators are nonlinear edge-preserving and noise-reducing,
see Sect. 3, while the restriction operators are determined by weighted local least-
squares approximation following [11]. The purpose of the weights is to avoid
smearing of edges. Specifically, the prolongation method, inspired by the work
[8] for super-resolution image processing, maps the image u® € RNG) from level
j to an image u(® € RNU+D on level j + 1,

u® = Sm(u(i)) = argmin {||lu|lrv + 5||u(i) — R(G xu)|?}, (5)
WERNG+1)
where || - ||7v is a vector semi-norm of TV-type, 8 > 0 is an empirically deter-

mined fixed parameter [8], and R is the restriction operator used in the cascadic
procedure. The kernel is assumed to be a convolution, and * denotes convolution.
In the computed examples we use the Gaussian kernel

]. 2 2
a = —(@"+y7) /4y 6
(@.9) = e 7 (6)
where 7 is tuned based on the fact that the higher-resolution image has four
times as many pixels as the lower resolution image. The image u(®) obtained
from (5) in this manner is applied in (3), i.e., u(®) is the first iterate of the
alternating method on level j + 1.

3 Denoising, deblurring, and prolongation methods

This section describes the denoising, deblurring, and prolongation methods that
are used in the cascadic alternating method.



4 Serena Morigi, Lothar Reichel and Fiorella Sgallari
3.1 Denoising

Denoising methods seek to remove the noise in an image without removing the
signal. Thresholding in the wavelet domain for denoising has been pioneered by
Donoho [4]. Nonlinear soft thresholding in the wavelet transform domain consists
of three steps: 1) linear forward wavelet transformation, 2) nonlinear shrinkage
denoising based on thresholding of the wavelet coefficients, and 3) linear inverse
wavelet transformation.

In the denoising step (3) of the cascadic alternating method, the first term
in brackets can be written as

lw = uC D2 =3 (w, i) = (@l )2

k

by using the unitary invariance property of the 2-norm. Therefore (3) can be
expressed as

weRN () k

w(l) = argmin {Z ((<w7wk> - <u(i71)7¢k>)2 + >\k|<w7wk>|>} . (7)

The solution of (7) is obtained by soft thresholding [4]:

. <u(i_1)awk> - A/€/2a if<u(i_1)’wk> 2 )\k/2
(WD ) = § (@O, h) + A /2, i 0D, 4hy) < —Ap/2
0, otherwise.

The threshold parameter A\ is determined by the BayesShrink soft thresholding
technique as described in [3]. Our cascadic alternating method applies this de-
noising technique as a first step on each level of the alternating method. This
yields an estimate of the amount of noise in the currently available contaminated
image. It is important that a fairly accurate estimate of the noise is available in
the subsequent deblurring step of the alternating method to be able to determine
a suitable value of the regularization parameter. Following [3], we use on each
level j the robust median estimator for the noise. Thus, the variance of the noise
o? is estimated by

5, = MAD,/C, (8)

where M AD; denotes the median absolute value of appropriately normalized
fine-scale wavelet coefficients, and following [3], we let C' = 0.6745. An estimate
of the norm of the noise in f°, required in the deblurring step, now is obtained
from (8),

6 = A?N(j).

We use this formula to estimate the amount of noise on all levels, including the
finest one.
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3.2 Deblurring

In step (4) on level j of the alternating method, we solve a sequence of discrete
image deblurring problems by the iterative Krylov subspace method proposed
in [1]. The solution method is based on partial Golub-Kahan bidiagonalization
of the blurring matrix H; with initial vector f]‘-S given by the restriction (2).
Similarly as above, we denote H; and f]‘s by H and f?, respectively. Application
of ¢ steps of Golub-Kahan bidiagonalization to H yields the matrices Upy1 €
RN@Xx (D) and V, € RVU > with orthonormal columns, and a lower bidiagonal
matrix Cy € RUHTD*L with positive diagonal and subdiagonal entries such that

HV, = Up1Cy, H*U, = V,Cy, Uerer = /11, 9)

where U, € RVNWX¢ is made up of the ¢ first columns of Uppy, Cp € RIX!
consists of the first ¢ rows of Cy, the superscript * denotes transposition, and
er = [1,0,...,0]* is the first axis vector. The columns of V; span the Krylov
subspace

K= Ke(H*H,H*f°) := span{H* f°, (H*H)H* f°,... (H*H)" *H* f°}.

We assume £ to be small enough, so that the decompositions (9) with the stated
properties exist. Substituting u = Vpy into (4) yields the reduced minimization
problem

min { ey — ex |17 + ally — Vo w12}
yER?
2
; (10)

= min
yEeR?

Cy Y- el ol
val VaViw®
where, for i > 1, w® is obtained from the previous alternating step (3), and
w® := u(®) ., The minimization problem (10) has a unique solution y; = yy,, for

any « > 0, and the corresponding solution of (4) is given by

ul® =y = Veye. (11)

Let § be an available bound for the Euclidean norm of the error in f°. A
vector u is said to satisfy the discrepancy principle if |[Hu — f?|| < 16 for some
chosen value of the parameter n. Typically, 7 is chosen to be close to unity if an
accurate estimate of the norm of the noise § is available. We let the regularization
parameter « be as large as possible so that the solution (11) of (4) satisfies the
discrepancy principle, i.e., so that

1Hue — f°] = no. (12)
It follows from (9) and (11) that
1Hue = £1l = |Ceye — ex| £1 I (13)

Therefore, a value of a such that the computed solution u, satisfies (12) can be
determined by only considering the reduced problem in the right-hand side of
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(13). The determination of such a value of « typically requires the solution of
a sequence of small least-squares problems (10), each problem corresponding to
a different value of a. We may solve these problems, e.g., by using the singular
value decomposition of the matrix Cy, or more cheaply by applying a scheme
described by Eldén [5]. Zero-finders for determining a value of « such that (12)
holds are discussed in [1].

The computations on each level are terminated as soon as two successive ap-
proximate solutions w( and w(*~1) are sufficiently close; see (15) below. The con-
vergence of a Krylov subspace-based alternating one-level method is established
in [1] by an adaption of the convergence proof in [7]. The computations with the
alternating multilevel method of the present paper on levels 1,2,...,m —1, i.e.,
on all levels but the finest one, may be considered preprocessing for a one-level
Krylov subspace-based alternating method. The purpose of the preprocessing is
to determine an accurate initial iterate for alternation on the finest level. Since
the convergence result does not depend on the use of a particular initial iterate,
the convergence proof in [1] applies to multilevel methods. In fact, convergence
on each level can be established by considering the computations on the previous
levels a preprocessing step designed to determine an accurate initial approximate
solution of the solution on the next level.

The convergence proofs in [1,7] do not address the quality of the restored
images in the sense that on each level the stopping rule (15) may be satisfied by
many images of varying quality. In fact, the quality of the computed restoration
depends on the quality of the initial iterate on the finest level. An accurate initial
iterate may help determine an accurate restoration. This is illustrated in [10, 11],
and is one of the benefits of multilevel methods. The design of the prolongation
method therefore is important. It is also important that no high-frequency errors,
such as spurious edges, are introduced during the computations on the first m—1
levels, because such errors may be difficult to remove on the finest level.

3.3 Prolongation

The cascadic alternating method requires prolongation operators to be applied
to map the computed approximate solution from level j to the next finer level
7+ 1 for all j. Both linear and nonlinear prolongation operators can be used; see
[9] and reference therein.

The prolongation step is a super-resolution process and suffers from similar
difficulties as the latter due to the ill-conditioning of the problem. In fact, high-
resolution and low-resolution images are typically related through a convolution
operator and a down-sampling operator. Several methods have been proposed
in the literature for super-resolution. Many of them are based on least-squares
approximation, the use of Fourier series, and other Lo-norm approximation meth-
ods; see Marquina and Osher [8], who propose a variational method that uses
the TV-norm as regularizing functional for deblurring and oversampling images.

We can solve the Euler-Lagrange equation associated to the variational prob-
lem (5) by means of the gradient-descent method formulated as the time evolu-
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tion equation

ou  Vu . (D)) _ "
5=V Wu|+ﬁG (Su'™) = S(R(G xu))),

where S represents an up-sampling operator implemented as a bilinear inter-
polation, R is the restriction operator, and G is defined in (6). We considered
homogeneous Neumann boundary conditions and initialize with u® = S(u(®).

4 Numerical experiments

This section illustrates the performance of the cascadic alternating method de-
fined by (3)-(4) and (5). Given a representation of the blur- and noise-free image
u € R"2, we determine a blur- and noise-contaminated image f° € R™ from

fo=Hiu+e.

The “noise-vector” e € R™ has normally distributed entries with mean zero,
and is scaled to yield a desired noise-level

(14)

Our task is to compute an accurate approximation of @, given f° and H by the
cascadic-alternating iterative method. We terminate the alternating iterations
and accept w(® as the computed approximation of @ as soon as the relative
difference between consecutive iterates w™®, w® w® ... is sufficiently small;
specifically, we accept w(® when for the first time

lw® — w7 < 1-107% (15)

The displayed restored images provide a qualitative measure of the perfor-
mance of the alternating methods. The signal-to-noise ratio

il

SNR(w®, @) = 201og, T —a

dB

is a quantitative measure of the quality of w(®. A high SNR-value indicates that
the restoration is accurate.

Example 4.1. We consider the restoration of tiger images that have been
corrupted by white Gaussian noise and Gaussian blur. Each image is represented
by 256 x 256 pixels, i.e., n = 256. The block-Toeplitz-Toepliz-block matrix H
represents a Gaussian blurring operator and is generated with the MATLAB
function blur.m from Regularization Tools [6]. This function has two parameters,
band and sigma. The former specifies the half-bandwidth of the Toeplitz blocks
and the latter the variance of the Gaussian point spread function. The larger
sigma, the more blurring. Enlarging band increases the storage requirement, the
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arithmetic work necessary for the evaluation of matrix-vector products with H,
and to some extent the blurring.

Tables 1 and 2 report results achieved with the cascadic-alternating method
of this paper and compare them to results obtained with a corresponding one-
level alternating method for several noise-levels d. The first column of Table 1
shows the cascadic level and the second column displays the noise-level (14).
The third column, labeled SNR;, reports the SNR-values for the available con-
taminated image f9, i.e., the value SNR(f°,@). Columns four and five display
the SNR-values of the restored images determined by two levels of the cascadic-
alternating method after the alternating procedure at a given cascadic level
(SNRy;¢) and after prolongation (SNR,,.) from the first to the second level.
The number of alternating iterations is reported in brackets (its). SNRy;; in
the sixth column refers to a basic one-level alternating method applied to the
given contaminated image on the finest level only. The number of iterations re-
quired (its) is also shown. Thus, the SNR-values increase with each level of the
alternating method. Moreover, the initial image for the second level has a larger
SNR-value than the available contaminated image f°. The parameter n in (12)
is set to 0.4 on the first level and to 0.98 on the finer level. The number of
bidiagonalization steps is set to £ = 10.

level| 0 |SNR;|[SNR(its)|[SNRprot||SNRaie (its)
1 |0.10{10.82| 12.15(2) 12.08
2 13.18(1)
12.85 (4)
1 ]0.20[9.05 || 11.33(1) | 11.60
11.89(1)
10.79 (3)
1 10.30| 7.00 10.31(1) 10.75
11.31(1)
10.72 (3)

Table 1. Example 4.1: Results for restorations of tiger images that have been cor-
rupted by Gaussian blur, determined by band = 5 and sigma = 3, and by noise corre-
sponding to noise-level §.

Tables 1 and 2 show the restorations obtained by cascadic-alternating mul-
tilevel method to be of higher quality, as measured by the SNR-values, than
restorations computed by one-level alternating methods. This is in agreement
with visual perception. The SNR,;,;-values, which displays the SNR-value of
the restored image after prolongation, show how the prolongation method im-
proves the restorations. The observed blurred and noisy image represented by f?
is shown on the right-hand side of Fig. 1(a) and the restoration w® is depicted
in Fig. 1(d). O
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level| 0 |SNR;|[SNRat(its)|SNRprot||SNRaiz (its)
1 ]0.15[12.12| 12.85(2) 13.75
2 14.88(1)
14.50 (4)
1 ]0.30[ 8.02 || 10.72(1) | 12.07
2 12.88(1)
12.70 (4)
1 [0.45[4.97 | 8.91(2) | 10.58
2 11.18(1)
10.75 (5)

Table 2. Example 4.1: Results for restorations of tiger images that have been cor-
rupted by Gaussian blur, determined by band = 3 and sigma = 3, and by noise corre-
sponding to noise-level 6.

level|band|sigma|SNR; [[SNRat (its) [SNRprot || SNRais (its)
1 3 3 |11.57] 11.05(1) 12.10
2 13.08(1) | 13.55
3 15.35(1)
15.03 (4)
1[5 | 3 [943] 1055(1) | 10.64
2 12.26(1) | 12.38
3 13.33(1)
13.02 (4)
T [ 7] 3 [809] 91L(1) | 958
2 10.82(1) | 10.89
3 11.74(1)
11.43 (4)
1 5 5 9.26 10.33(1) 10.53
2 12.05(1) | 12.06
3 13.03(1)
12.65 (4)

Table 3. Example 4.2: Results for restorations of butterfly images that have been
corrupted by Gaussian blur, determined by variable band and sigma, and by noise
corresponding to noise-level § = 20%.
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Example 4.2. We consider the restoration of blur- and noise-contaminated
butterfly images. They are represented by 512 x 512 pixels, i.e., n = 512. The
exact image is shown in Fig. 2(a). The observed image is corrupted by white
Gaussian noise and Gaussian blur, characterized by the parameter values of
band and sigma.

Table 3 is analogous to Tables 1 and 2, and reports SNR-values for restored
butterfly images determined by the proposed cascadic alternating method and
by a corresponding one-level alternating method. We observe that the compu-
tational effort required by the cascadic alternating method is smaller than for
the one-level alternating method, due to the fact that the cascadic alternating
method only requires one iteration on each level, while the one-level alternating
method demands 4 iterations on the finest level. Since the computational cost
of each cascadic alternating iteration grows with the image dimension, only the
cost for the iteration on the finest level is significant. The parameter 7 in (12) is
set to 0.5, 0.9, and 0.95, from the coarsest to finest level. The number of bidiag-
onalization steps £ is increased with the level number according to £ = 5, 10, 20.

Our experimental results show that the quality of restored images obtained
with a three-level cascadic alternating method is competitive with a correspond-
ing one-level alternating method with regard to image quality as well as with
regard to computational effort, since all iterations with the one-level method are
carried out on the finest level.

The contaminated blurred and noisy image represented by f° is shown in
Fig. 2(b) and the restorations obtained by the cascadic alternating and by the
one-level alternating methods are depicted in Fig. 2(c) and 2(d), respectively.

5 Conclusion and further developments

This paper describes a new cascadic alternating method for image deblurring
and denoising, in which we alternate between deblurring, carried out by a Krylov
subspace iterative method based on partial Golub-Kahan bidiagonalization of the
blurring matrix, and denoising by wavelet thresholding. The method combines
the performance of a cascadic method with the well-known accuracy obtained by
an alternating method at each level. Further numerical results and comparisons
with state-of-the-art methods will be reported and convergence properties and
accuracy aspects will be discussed in forthcoming work.
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(d)

Fig. 1. Example 4.1: Restoration of corrupted version of the tiger image: (a) Unper-
turbed image ; (b) the corrupted image produced by Gaussian blur, determined by the
parameters band = 5 and sigma = 3, and by 20% noise, SNR=9.05; (c) restored im-
ages with 1—level alternating method (SNR=10.79), (d) 2—level cascadic-alternating
method (SNR=11.89).
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Fig. 2. Example 4.2: Restoration of corrupted version of the butterfly image: (a)
unperturbed image ; (b) the corrupted image produced by Gaussian blur, determined
by the parameters band = 5 and sigma = 5, and by 20% noise, SNR =9.26; (c)
restored image by the 1-level alternating method with 4 iterations; (d) restored image
determined by 3-levels of cascadic alternating.



