Abstract
This paper describes a cascadic image restoration method which at each level applies a two-way alternating denoising and deblurring procedure. Denoising is carried out with a wavelet transform, which also provides an estimate of the noise-level. The latter is used to determine a suitable regularization parameter for the Krylov subspace iterative deblurring method. The cascadic multilevel method proceed from coarse to fine image resolution, using suitable restriction and prolongation operators. The choice of the latter is critical for the performance of the multilevel method. We introduce a special deblurring prolongation procedure based on TV regularization. Computed examples demonstrate the effectiveness of the method proposed for determining image restorations of high quality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abad, J.O., Morigi, S., Reichel, L., Sgallari, F.: Alternating Krylov subspace image restoration methods. J. Comput. Applied Math. 236, 2049–2062 (2012)
Chan, T.F., Chen, K.: An optimization-based multilevel algorithm for total variation image denoising. Multiscale Model. Simul. 5, 615–645 (2006)
Chang, S.G., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image de-noising and compression. IEEE Trans. Image Proc. 9, 1532–1546 (2000)
Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41, 613–627 (1995)
Eldén, L.: Algorithms for the regularization of ill-conditioned least squares problems. BIT 17, 134–145 (1977)
Hansen, P.C.: Regularization tools version 4.0 for Matlab 7.3. Numer. Algorithms 46, 189–194 (2007)
Huang, Y., Ng, M.K., Wen, Y.-W.: A fast total variation minimization method for image restoration. Multiscale Model. Simul. 7, 774–795 (2008)
Marquina, A., Osher, S.: Image super-resolution by TV-regularization and Bregman iteration. J. Sci. Comput. 37, 367–382 (2008)
Morigi, S., Reichel, L., Sgallari, F., Shyshkov, A.: Cascadic multiresolution methods for image deblurring. SIAM J. Imaging Sci. 1, 51–74 (2008)
Morigi, S., Reichel, L., Sgallari, F.: Noise-reducing cascadic multilevel methods for linear discrete ill-posed problems. Numer. Algorithms 53, 1–22 (2010)
Morigi, S., Reichel, L., Sgallari, F.: Cascadic multilevel methods for fast nonsymmetric blur- and noise-removal. Appl. Numer. Math. 60, 378–396 (2010)
Morigi, S., Reichel, L., Sgallari, F.: An edge-preserving multilevel method for deblurring, denoising, and segmentation. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 427–439. Springer, Heidelberg (2009)
Wen, Y.-W., Ng, M.K., Ching, W.-K.: Iterative algorithms based on decoupling of deblurring and denoising for image restoration. SIAM J. Sci. Comput. 30, 2655–2674 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Morigi, S., Reichel, L., Sgallari, F. (2013). A Cascadic Alternating Krylov Subspace Image Restoration Method. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2013. Lecture Notes in Computer Science, vol 7893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38267-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-38267-3_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38266-6
Online ISBN: 978-3-642-38267-3
eBook Packages: Computer ScienceComputer Science (R0)